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Ontological Engineering
1-85233-551-3

Amo Scharil (Ed.)
Environmental Online Communication
1-85233-783-4

Shichao Zhang, Chengqi Zhang and Xindong Wu
Knowledge Discovery in Multiple Databases
1-85233-703-6



Jason T.L. Wang, Mohammed J. Zaki,
Hannu T.T. Toivonen and Dennis Shasha (Eds)

Data Mining in
Bioinformatics
With 110 Figures



Jason T.L. Wang, PhD
New Jersey Institute of Technology, USA
Mohammed J. Zaki, PhD
Computer Science Department, Rensselaer Polytechnic Institute, USA
Hannu T.T. Toivonen, PhD
University of Helsinki and Nokia Research Center
Dennis Shasha, PhD
New York University, USA

Series Editors
Xindong Wu
Lakhmi Jain

British Library Cataloguing in Publication Data
Data mining in bioinformatics. — (Advanced information and

knowledge processing)
1. Data mining 2. Bioinformatics — Data processing
I. Wang, Jason T. L.
006.3′12
ISBN 1852336714

Library of Congress Cataloging-in-Publication Data
A catalogue record for this book is available from the American Library of Congress.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be repro-
duced, stored or transmitted, in any form or by any means, with the prior permission in writing of
the publishers, or in the case of reprographic reproduction in accordance with the terms of licences
issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms
should be sent to the publishers.

AI&KP ISSN 1610-3947
ISBN 1-85233-671-4 Springer London Berlin Heidelberg
Springer Science+Business Media
springeronline.com

© Springer-Verlag London Limited 2005

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence
of a specific statement, that such names are exempt from the relevant laws and regulations and
therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the infor-
mation contained in this book and cannot accept any legal responsibility or liability for any errors
or omissions that may be made.

Typesetting: Electronic text files prepared by authors
Printed and bound in the United States of America
34/3830-543210 Printed on acid-free paper SPIN 10886107



Contents

Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Part I. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1. Introduction to Data Mining in Bioinformatics . . . . . . . . . . . 3
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Organization of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Support on the Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. Survey of Biodata Analysis from a Data Mining
Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Data Cleaning, Data Preprocessing, and Data Integration . . . 12
2.3 Exploration of Data Mining Tools for Biodata Analysis . . . . . . 16
2.4 Discovery of Frequent Sequential and Structured Patterns . . . 21
2.5 Classification Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Cluster Analysis Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 Computational Modeling of Biological Networks . . . . . . . . . . . . 28
2.8 Data Visualization and Visual Data Mining . . . . . . . . . . . . . . . . 31
2.9 Emerging Frontiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Part II. Sequence and Structure Alignment . . . . . . . . . . . . . . . . . . . 41

3. AntiClustAl: Multiple Sequence Alignment by Antipole
Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Antipole Tree Data Structure for Clustering . . . . . . . . . . . . . . . 47
3.4 AntiClustAl: Multiple Sequence Alignment via Antipoles . . . . 48
3.5 Comparing ClustalW and AntiClustAl . . . . . . . . . . . . . . . . . . . . 51
3.6 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.8 Future Developments and Research Problems . . . . . . . . . . . . . . 56



vi Data Mining in Bioinformatics

4. RNA Structure Comparison and Alignment . . . . . . . . . . . . . . 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 RNA Structure Comparison and Alignment Models . . . . . . . . . 60
4.3 Hardness Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Algorithms for RNA Secondary Structure Comparison . . . . . . 67
4.5 Algorithms for RNA Structure Alignment . . . . . . . . . . . . . . . . . 71
4.6 Some Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Part III. Biological Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5. Piecewise Constant Modeling of Sequential Data
Using Reversible Jump Markov Chain Monte Carlo . . . . . . 85
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Bayesian Approach and MCMC Methods . . . . . . . . . . . . . . . . . . 88
5.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6. Gene Mapping by Pattern Discovery . . . . . . . . . . . . . . . . . . . . . 105
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Gene Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3 Haplotype Patterns as a Basis for Gene Mapping . . . . . . . . . . . 110
6.4 Instances of the Generalized Algorithm . . . . . . . . . . . . . . . . . . . . 117
6.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7. Predicting Protein Folding Pathways . . . . . . . . . . . . . . . . . . . . . 127
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.3 Predicting Folding Pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.4 Pathways for Other Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8. Data Mining Methods for a Systematics of Protein
Subcellular Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

9. Mining Chemical Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
9.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
9.3 Related Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
9.4 Classification Based on Frequent Subgraphs . . . . . . . . . . . . . . . . 196
9.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
9.6 Conclusions and Directions for Future Research . . . . . . . . . . . . 213



Contents vii

Part IV. Biological Data Management . . . . . . . . . . . . . . . . . . . . . . . . 217

10. Phyloinformatics: Toward a Phylogenetic Database . . . . . . . 219
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
10.2 What Is a Phylogenetic Database For? . . . . . . . . . . . . . . . . . . . . 222
10.3 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
10.4 Tree Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
10.5 Synthesizing Bigger Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
10.6 Visualizing Large Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
10.7 Phylogenetic Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
10.8 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
10.9 Prospects and Research Problems . . . . . . . . . . . . . . . . . . . . . . . . 240

11. Declarative and Efficient Querying on Protein
Secondary Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
11.2 Protein Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
11.3 Query Language and Sample Queries . . . . . . . . . . . . . . . . . . . . . 246
11.4 Query Evaluation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
11.5 Query Optimizer and Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 252
11.6 Experimental Evaluation and Application of Periscope/PS2 . . 267
11.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

12. Scalable Index Structures for Biological Data . . . . . . . . . . . . . 275
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
12.2 Index Structure for Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
12.3 Indexing Protein Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
12.4 Comparative and Integrative Analysis of Pathways . . . . . . . . . 283
12.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Biographies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337



Contributors

Peter Bajcsy
Center for Supercomputing

Applications
University of Illinois at

Urbana-Champaign
USA

Deb Bardhan
Department of Computer Science
Rensselaer Polytechnic Institute
USA

Chris Bystroff
Department of Biology
Rensselaer Polytechnic Institute
USA

Mukund Deshpande
Oracle Corporation
USA

Cinzia Di Pietro
School of Medicine
University of Catania
Italy

Alfredo Ferro
Department of Mathematics and

Computer Science
University of Catania
Italy

Laurie Jane Hammel
Department of Defense
USA

Jiawei Han
Department of Computer Science
University of Illinois at

Urbana-Champaign
USA

Kai Huang
Department of Biological Sciences
Carnegie Mellon University
USA

Donald P. Huddler
Biophysics Research Division
University of Michigan
USA

George Karypis
Department of Computer Science

and Engineering
University of Minnesota
USA

Michihiro Kuramochi
Department of Computer Science

and Engineering
University of Minnesota
USA



x Data Mining in Bioinformatics

Lei Liu
Center for Comparative

and Functional Genomics
University of Illinois at

Urbana-Champaign
USA

Heikki Mannila
Department of Computer Science
Helsinki University of Technology
Finland

Robert F. Murphy
Departments of Biological Sciences

and Biomedical Engineering
Carnegie Mellon University
USA

Vinay Nadimpally
Department of Computer Science
Rensselaer Polytechnic Institute
USA
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Part I

Overview



Chapter 1
Introduction to Data Mining in Bioinformatics

Jason T. L. Wang, Mohammed J. Zaki,
Hannu T. T. Toivonen, and Dennis Shasha

Summary
The aim of this book is to introduce the reader to some of the best
techniques for data mining in bioinformatics in the hope that the reader
will build on them to make new discoveries on his or her own. The
book contains twelve chapters in four parts, namely, overview, sequence
and structure alignment, biological data mining, and biological data
management. This chapter provides an introduction to the field and
describes how the chapters in the book relate to one another.

1.1 Background

Bioinformatics is the science of managing, mining, integrating, and
interpreting information from biological data at the genomic, metabalomic,
proteomic, phylogenetic, cellular, or whole organism levels. The need for
bioinformatics tools and expertise has increased as genome sequencing
projects have resulted in an exponential growth in complete and partial
sequence databases. Even more data and complexity will result from
the interaction among genes that gives rise to multiprotein functionality.
Assembling the tree of life is intended to construct the phylogeny for the
1.7 million known species on earth. These and other projects require the
development of new ways to interpret the flood of biological data that exists
today and that is anticipated in the future.

Data mining or knowledge discovery from data (KDD), in its
most fundamental form, is to extract interesting, nontrivial, implicit,
previously unknown and potentially useful information from data [165]. In
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bioinformatics, this process could refer to finding motifs in sequences to
predict folding patterns, to discover genetic mechanisms underlying a disease,
to summarize clustering rules for multiple DNA or protein sequences, and so
on. With the substantial growth of biological data, KDD will play a significant
role in analyzing the data and in solving emerging problems.

The aim of this book is to introduce the reader to some of the best
techniques for data mining in bioinformatics (BIOKDD) in the hope that
the reader will build on them to make new discoveries on his or her own.
This introductory chapter provides an overview of the work and how the
chapters in the book relate to one another. We hope the reader finds the
book and the chapters as fascinating to read as we have found them to write
and edit.

1.2 Organization of the Book

This book is divided into four parts:

I. Overview
II. Sequence and Structure Alignment

III. Biological Data Mining
IV. Biological Data Management

Part I presents a primer on data mining for bioinformatics. Part II
presents algorithms for sequence and structure alignment, which are crucial
to effective biological data mining and information retrieval. Part III consists
of chapters dedicated to biological data mining with topics ranging from
genome modeling and gene mapping to protein and chemical mining. Part IV
addresses closely related subjects, focusing on querying and indexing methods
for biological data. Efficient indexing techniques can accelerate a mining
process, thereby enhancing its overall performance. Table 1.1 summarizes
the main theme of each chapter and the category it belongs to.

1.2.1 Part I: Basics

In chapter 2, Peter Bajcsy, Jiawei Han, Lei Liu, and Jiong Yang review
data mining methods for biological data analysis. The authors first present
methods for data cleaning, data preprocessing, and data integration. Next
they show the applicability of data mining tools to the analysis of sequence,
genome, structure, pathway, and microarray gene expression data. They
then present techniques for the discovery of frequent sequence and structure
patterns. The authors also review methods for classification and clustering
in the context of microarrays and sequences and present approaches for the
computational modeling of biological networks. Finally, they highlight visual
data mining methods and conclude with a discussion of new research issues
such as text mining and systems biology.
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Table 1.1. Main theme addressed in each chapter.

Part I. Overview
Chapter 1 Introduction
Chapter 2 Survey

Part II. Sequence and Structure Alignment
Chapter 3 Multiple Sequence Alignment and Clustering
Chapter 4 RNA Structure Comparison

Part III. Biological Data Mining
Chapter 5 Genome Modeling and Segmentation
Chapter 6 Gene Mapping
Chapter 7 Predicting Protein Folding Pathways
Chapter 8 Predicting Protein Subcellular Location
Chapter 9 Mining Chemical Compounds

Part IV. Biological Data Management
Chapter 10 Phylogenetic Data Processing
Chapter 11 Protein Structure Querying
Chapter 12 Indexing Biological Data

1.2.2 Part II: Sequence and Structure Alignment

In chapter 3, by exploiting a simple and natural algorithmic technique based
on randomized tournaments, C. Di Pietro and coauthors propose to use a
structure they call an antipole tree to align multiple sequences in a bottom-
up way along the tree structure. Their approach achieves a better running
time with equivalent alignment quality when compared with the widely used
multiple sequence alignment tool ClustalW. The authors conducted a case
study on Xenopus laevis SOD2 sequences, and their experimental results
indicated the excellent performance of the proposed approach. This approach
could be particularly significant for large-scale clustering.

In chapter 4, Kaizhong Zhang examines algorithms for comparing RNA
structures based on various models ranging from simple edit operations to
their extensions with gap penalty as well as with base-pair bond breaking.
Besides its major role as a template for proteins, RNA plays a significant role
in regulating the functions of several viruses such as HIV. Comparing RNA
structures may help one to understand their functions and hence the cause
of some virus-related diseases. Other applications of the algorithms include
using them to align or cluster RNA structures and to predict the secondary
or tertiary structure from a given RNA sequence.

1.2.3 Part III: Biological Data Mining

In chapter 5, Marko Salmenkivi and Heikki Mannila discuss segmentation of
sequential data, e.g., DNA sequences, to internally homogeneous segments.
They first describe a domain-independent segmentation framework, which is
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based on a Bayesian model of piecewise constant functions. They then show
how the posterior distributions from such models can be approximated by
reversible jump Markov chain Monte Carlo methods. The authors proceed
to illustrate the application of the methodology to modeling the GC content
and distribution of occurrences of open reading frames (ORFs) and single-
nucleotide polymorphisms (SNPs) along the human genome. Their results
show how the simple models can be extended by modeling the influence of
the GC content on the intensity of ORF occurrence.

In chapter 6, Petteri Sevon, Hannu Toivonen, and Paivi Onkamo present
a data mining approach to gene mapping, coined haplotype pattern mining
(HPM). The framework is based on finding patterns of genetic markers (e.g.,
single-nucleotide polymorphisms, or SNPs) that are associated with a disease
and that are thus likely to occur close to the disease susceptibility gene.
The authors first describe an abstract algorithm for the task. Then they
show how to predict a gene location based on marker patterns and how to
analyze the statistical significance of the results. Finally they present and
evaluate three different instances of the algorithm for different gene mapping
problems. Experimental results demonstrate the power and the flexibility of
their approach.

In chapter 7, Mohammed Zaki, Vinay Nadimpally, Deb Bardhan, and
Chris Bystroff present one of the first works to predict protein folding
pathways. A folding pathway is the time-ordered sequence of folding events
that leads from a given amino acid sequence to its given three-dimensional
structure. The authors approach this problem by trying to learn how to
“unfold” the protein in a time-ordered sequence of steps, using techniques
borrowed from graph theory. The reversal of the obtained sequence could
be a plausible protein folding pathway. Experimental results on several
proteins for which there are known intermediate stages in the folding pathway
demonstrate the usefulness of the proposed approach. Potential applications
of this work include enhancing structure prediction methods as well as better
understanding some diseases caused by protein misfolding.

In chapter 8, Kai Huang and Robert Murphy provide a comprehensive
account of methods and features for the prediction of protein subcellular
location. Location gives insight into protein function inside the cell. For
example, a protein localized in mitochondria may mean that this protein
is involved in energy metabolism. Proteins localized in the cytoskeleton are
probably involved in intracellular signaling and support. The authors describe
the acquisition of protein fluorescence microscope images for the study. They
then discuss the construction and selection of subcellular location features
and introduce different feature sets. The feature sets are then used and
compared in protein classification and clustering tasks with various machine
learning methods.

In chapter 9, Mukund Deshpande, Michihiro Kuramochi, and George
Karypis present a structure-based approach for mining chemical compounds.
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The authors tackle the problem of classifying chemical compounds by
automatically mining geometric and topological substructure-based features.
Once features have been found, they use feature selection and construct a
classification model based on support vector machines. The key step for
substructure mining relies on an efficient subgraph discovery algorithm.
When compared with the well-known graph mining tool SUBDUE, the
authors’ technique is often faster in substructure discovery and achieves
better classification performance.

1.2.4 Part IV: Biological Data Management

Querying biological databases is more than just a matter of returning a
few records. The data returned must be visualized and summarized to help
practicing bench biologists. In chapter 10, Roderic Page explores some of the
data querying and visualization issues posted by phylogenetic databases. In
particular the author discusses taxonomic names, supertrees, and navigating
phylogenies and reviews several phylogenetic query languages, some of which
are extensions of the relational query language SQL. The author also lists
some prototypes that implemented the described ideas to some extent
and indicates the need for having an integrated package suitable for the
phyloinformatics community.

In chapter 11, Jignesh Patel, Donald Huddler, and Laurie Hammel
propose a protein search tool based on secondary structure. The authors
define an intuitive, declarative query language, which enables one to use his
or her own definition of secondary structure similarity. They identify different
algorithms for the efficient evaluation of the queries. They then develop a
query optimization framework for their language. The techniques have been
implemented in a system called Periscope, whose applications are illustrated
in the chapter.

In chapter 12, Ambuj Singh presents highly scalable indexing schemes
for searching biological sequences, structures, and metabolic pathways. The
author first reviews the current work for sequence indexing and presents the
new MAP (match table-based pruning) scheme, which achieves two orders
of magnitude faster processing than BLAST while preserving the output
quality. Similarly, the author gives an overview and a new indexing scheme
(PSI) for searching protein structures. Finally, the author discusses in detail
indexing approaches for comparative and integrative analysis of biological
pathways, presenting methods for structural comparison of pathways as well
as the analysis of time variant and invariant properties of pathways. While
fast search mechanisms are desirable, as the author points out, the quality
of search results is equally important. In-depth comparison of the results
returned by the new indexing methods with those from the widely used tools
such as BLAST is a main subject of future research.
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1.3 Support on the Web

This book’s homepage is

http://web.njit.edu/∼wangj/publications/biokdd.html

This page provides up-to-date information and corrections of errors found
in the book. It also provides links to data mining and management tools and
some major biological data mining centers around the world.
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Chapter 2
Survey of Biodata Analysis
from a Data Mining Perspective

Peter Bajcsy, Jiawei Han, Lei Liu, and Jiong Yang

Summary
Recent progress in biology, medical science, bioinformatics, and
biotechnology has led to the accumulation of tremendous amounts of
biodata that demands in-depth analysis. On the other hand, recent
progress in data mining research has led to the development of
numerous efficient and scalable methods for mining interesting patterns
in large databases. The question becomes how to bridge the two fields,
data mining and bioinformatics, for successful mining of biological data.
In this chapter, we present an overview of the data mining methods that
help biodata analysis. Moreover, we outline some research problems
that may motivate the further development of data mining tools for
the analysis of various kinds of biological data.

2.1 Introduction

In the past two decades we have witnessed revolutionary changes in
biomedical research and biotechnology and an explosive growth of biomedical
data, ranging from those collected in pharmaceutical studies and cancer
therapy investigations to those identified in genomics and proteomics research
by discovering sequential patterns, gene functions, and protein-protein
interactions. The rapid progress of biotechnology and biodata analysis
methods has led to the emergence and fast growth of a promising new field:
bioinformatics. On the other hand, recent progress in data mining research
has led to the development of numerous efficient and scalable methods
for mining interesting patterns and knowledge in large databases, ranging
from efficient classification methods to clustering, outlier analysis, frequent,
sequential, and structured pattern analysis methods, and visualization and
spatial/temporal data analysis tools.
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The question becomes how to bridge the two fields, data mining and
bioinformatics, for successful data mining of biological data. In this chapter,
we present a general overview of data mining methods that have been
successfully applied to biodata analysis. Moreover, we analyze how data
mining has helped efficient and effective biomedical data analysis and outline
some research problems that may motivate the further development of
powerful data mining tools in this field. Our overview is focused on three
major themes: (1) data cleaning, data preprocessing, and semantic integration
of heterogeneous, distributed biomedical databases, (2) exploration of
existing data mining tools for biodata analysis, and (3) development of
advanced, effective, and scalable data mining methods in biodata analysis.

• Data cleaning, data preprocessing, and semantic integration of
heterogeneous, distributed biomedical databases

Due to the highly distributed, uncontrolled generation and use of a wide
variety of biomedical data, data cleaning, data preprocessing, and the
semantic integration of heterogeneous and widely distributed biomedical
databases, such as genome databases and proteome databases, have become
important tasks for systematic and coordinated analysis of biomedical
databases. This highly distributed, uncontrolled generation of data has
promoted the research and development of integrated data warehouses
and distributed federated databases to store and manage different forms of
biomedical and genetic data. Data cleaning and data integration methods
developed in data mining, such as those suggested in [92, 327], will help
the integration of biomedical data and the construction of data warehouses
for biomedical data analysis.

• Exploration of existing data mining tools for biodata analysis

With years of research and development, there have been many data
mining, machine learning, and statistics analysis systems and tools
available for general data analysis. They can be used in biodata exploration
and analysis. Comprehensive surveys and introduction of data mining
methods have been compiled into many textbooks, such as [165, 171,
431]. Analysis principles are also introduced in many textbooks on
bioinformatics, such as [28, 34, 110, 116, 248]. General data mining and
data analysis systems that can be used for biodata analysis include
SAS Enterprise Miner, SPSS, SPlus, IBM Intelligent Miner, Microsoft
SQLServer 2000, SGI MineSet, and Inxight VizServer. There are also many
biospecific data analysis software systems, such as GeneSpring, Spot Fire,
and VectorNTI. These tools are rapidly evolving as well. A lot of routine
data analysis work can be done using such tools. For biodata analysis, it
is important to train researchers to master and explore the power of these
well-tested and popular data mining tools and packages.
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With sophisticated biodata analysis tasks, there is much room for research
and development of advanced, effective, and scalable data mining methods
in biodata analysis. Some interesting topics follow.

1. Analysis of frequent patterns, sequential patterns and
structured patterns: identification of cooccurring or correlated
biosequences or biostructure patterns

Many studies have focused on the comparison of one gene with another.
However, most diseases are not triggered by a single gene but by
a combination of genes acting together. Association and correlation
analysis methods can be used to help determine the kinds of genes or
proteins that are likely to cooccur in target samples. Such analysis would
facilitate the discovery of groups of genes or proteins and the study
of interactions and relationships among them. Moreover, since biodata
usually contains noise or nonperfect matches, it is important to develop
effective sequential or structural pattern mining algorithms in the noisy
environment [443].

2. Effective classification and comparison of biodata

A critical problems in biodata analysis is to classify biosequences or
structures based on their critical features and functions. For example,
gene sequences isolated from diseased and healthy tissues can be
compared to identify critical differences between the two classes of
genes. Such features can be used for classifying biodata and predicting
behaviors. A lot of methods have been developed for biodata classification
[171]. For example, one can first retrieve the gene sequences from the
two tissue classes and then find and compare the frequently occurring
patterns of each class. Usually, sequences occurring more frequently in the
diseased samples than in the healthy samples indicate the genetic factors
of the disease; on the other hand, those occurring only more frequently
in the healthy samples might indicate mechanisms that protect the body
from the disease. Similar analysis can be performed on microarray data
and protein data to identify similar and dissimilar patterns.

3. Various kinds of cluster analysis methods

Most cluster analysis algorithms are based on either Euclidean distances
or density [165]. However, biodata often consist of a lot of features that
form a high-dimensional space. It is crucial to study differentials with
scaling and shifting factors in multidimensional space, discover pairwise
frequent patterns and cluster biodata based on such frequent patterns.
One interesting study using microarray data as examples can be found
in [421].
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4. Computational modeling of biological networks

While a group of genes/proteins may contribute to a disease process,
different genes/proteins may become active at different stages of the
disease. These genes/proteins interact in a complex network. Large
amounts of data generated from microarray and proteomics studies
provide rich resources for theoretic study of the complex biological system
by computational modeling of biological networks. If the sequence of
genetic activities across the different stages of disease development can
be identified, it may be possible to develop pharmaceutical interventions
that target the different stages separately, therefore achieving more
effective treatment of the disease. Such path analysis is expected to play
an important role in genetic studies.

5. Data visualization and visual data mining

Complex structures and sequencing patterns of genes and proteins are
most effectively presented in graphs, trees, cubes, and chains by various
kinds of visualization tools. Visually appealing structures and patterns
facilitate pattern understanding, knowledge discovery, and interactive
data exploration. Visualization and visual data mining therefore play
an important role in biomedical data mining.

2.2 Data Cleaning, Data Preprocessing,
and Data Integration

Biomedical data are currently generated at a very high rate at multiple
geographically remote locations with a variety of biomedical devices and by
applying several data acquisition techniques. All bioexperiments are driven
by a plethora of experimental design hypotheses to be proven or rejected
based on data values stored in multiple distributed biomedical databases, for
example, genome or proteome databases. To extract and analyze the data
perhaps poses a much bigger challenge for researchers than to generate the
data [181]. To extract and analyze information from distributed biomedical
databases, distributed heterogeneous data must be gathered, characterized,
and cleaned. These processing steps can be very time-consuming if they
require multiple scans of large distributed databases to ensure the data
quality defined by biomedical domain experts and computer scientists. From
a semantic integration viewpoint, there are quite often challenges due to the
heterogeneous and distributed nature of data since these preprocessing steps
might require the data to be transformed (e.g., log ratio transformations),
linked with distributed annotation or metadata files (e.g., microarray spots
and gene descriptions), or more exactly specified using auxiliary programs
running on a remote server (e.g., using one of the BLAST programs to
identify a sequence match). Based on the aforementioned data quality and



Survey of Biodata Analysis from a Data Mining Perspective 13

integration issues, the need for using automated preprocessing techniques
becomes eminent. We briefly outline the strategies for taming the data
by describing data cleaning using exploratory data mining (EDM), data
preprocessing, and semantic integration techniques [91, 165].

2.2.1 Data Cleaning

Data cleaning is defined as a preprocessing step that ensures data quality.
In general, the meaning of data quality is best described by the data
interpretability. In other words, if the data do not mean what one thinks, the
data quality is questionable and should be evaluated by applying data quality
metrics. However, defining data quality metrics requires understanding
of data gathering, delivery, storage, integration, retrieval, mining, and
analysis. Data quality problems can occur in any data operation step (also
denoted as a lifecycle of the data) and their corresponding data quality
continuum (end-to-end data quality). Although conventional definitions of
data quality would include accuracy, completeness, uniqueness, timeliness,
and consistency, it is very hard to quantify data quality by using quality
metrics. For example, measuring accuracy and completeness is very difficult
because each datum would have to be tested for its correctness against
the “true” value and all data values would have to be assessed against all
relevant data values. Furthermore, data quality metrics should measure data
interpretability by evaluating meanings of variables, relationships between
variables, miscellaneous metadata information and consistency of data.

In the biomedical domain, the data quality continuum involves answering
a few basic questions.

1. How do the data enter the system? The answers can vary a lot
because new biomedical technologies introduce varying measurement
errors and there are no standards for data file formats. Thus, the
standardization efforts are important for data quality, for instance, the
Minimum Information About a Microarray Experiment (MIAME) [51]
and MicroArray and Gene Expression (MAGE) [381] standardization
efforts for microarray processing, as well as, preemptive (process
management) and retrospective (cleaning and diagnostic) data quality
checks.

2. How are the data delivered? In the world of electronic information and
wireless data transfers, data quality issues include transmission losses,
buffer overflows, and inappropriate preprocessing, such as default value
conversions or data aggregations. These data quality issues have to be
addressed by verifying checksums or relationships between data streams
and by using reliable transmission protocols.

3. Where do the data go after being received? Although physical storage
may not be an issue anymore due to its low cost, data storage
can encounter problems with poor accompanying metadata, missing
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time stamps, or hardware and software constraints, for instance, data
dissemination in Excel spread sheets stored on an Excel-unsupported
platform. The solution is frequently thorough planning followed by
publishing data specifications.

4. Are the data combined with other data sets? The integration of new data
sets with already archived data sets is a challenge from the data quality
viewpoint since the data might be heterogeneous (no common keys) with
different variable definitions of data structures (e.g., legacy data and
federated data) and time asynchronous. In the data mining domain, a
significant number of research papers have addressed the issue of dataset
integrations, and the proposed solutions involve several matching and
mapping approaches. In the biomedical domain, data integration becomes
essential, although very complex, for understanding a whole system. Data
are generated by multiple laboratories with various devices and data
acquisition techniques while investigating a broad range of hypotheses at
multiple levels of system ontology.

5. How are the data retrieved? The answers to this question should be
constructed with respect to the computational resources and users’ needs.
Retrieved data quality will be constrained by the retrieved data size,
access speed, network traffic, data and database software compatibility,
and the type and correctness of queries. To ensure data quality, one has
to plan ahead to minimize the constraints and select appropriate tools
for data browsing and exploratory data mining (EDM) [92, 327].

6. How are the data analyzed? In the final processing phase, data quality
issues arise due to insufficient biomedical domain expertise, inherent data
variability, and lack of algorithmic scalability for large datasets [136]. As
a solution, any data mining and analysis should be an interdisciplinary
effort because the computer science models and biomedical models have
to come together during exploratory types of analyses [323]. Furthermore,
conducting continuous analyses and cross-validation experiments will
lead to confidence bounds on obtained results and should be used in a
feedback loop to monitor the inherent data variability and detect related
data quality problems.

The steps of microarray processing from start to finish that clearly map to
the data quality continuum are outlined in [181].

2.2.2 Data Preprocessing

What can be done to ensure biomedical data quality and eliminate
sources of data quality corruption for both data warehousing and data
mining? In general, multidisciplinary efforts are needed, including (1) process
management, (2) documentation of biomedical domain expertise, and (3)
statistical and database analyses [91]. Process management in the biomedical
domain should support standardization of content and format [51, 381],
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automation of preprocessing, e.g., microarray spot analysis [26, 28, 150],
introduction of data quality incentives (correct data entries and quality
feedback loops), and data publishing to obtain feedback (e.g., via MedLine
and other Internet sites). Documenting biomedical domain knowledge is not
a trivial task and requires establishing metadata standards (e.g., a document
exchange format MAGE-ML), creating annotation files, and converting
biomedical and engineering logs into metadata files that accompany every
experiment and its output data set. It is also necessary to develop text-
mining software to browse all documented and stored files [439]. In terms of
statistical and database analyses for the biomedical domain, the focus should
be on quantitative quality metrics based on analytical and statistical data
descriptors and on relationships among variables.

Data preprocessing using statistical and database analyses usually
includes data cleaning, integration, transformation, and reduction [165]. For
example, an outcome of several spotted DNA microarray experiments might
be ambiguous (e.g., a background intensity is larger than a foreground
intensity) and the missing values have to be filled in or replaced by a
common default value during data cleaning. The integration of multiple
microarray gene experiments has to resolve inconsistent labels of genes to
form a coherent data store. Mining microarray experimental data might
require data normalization (transformation) with respect to the same control
gene and a selection of a subset of treatments (data reduction), for instance,
if the data dimensionality is prohibitive for further analyses. Every data
preprocessing step should include static and dynamic constraints, such
as foreign key constraints, variable bounds defined by dynamic ranges
of measurement devices, or experimental data acquisition and processing
workflow constraints. Due to the multifaceted nature of biomedical data
measuring complex and context-dependent biomedical systems, there is no
single recommended data quality metric. However, any metric should serve
operational or diagnostic purpose and should change regularly with the
improvement of data quality. For example, the data quality metrics for
extracted spot information can be clearly defined in the case of raw DNA
microarray data (images) and should depend on (a) spot to background
separation and (b) spatial and topological variations of spots. Similarly, data
quality metrics can be defined at other processing stages of biomedical data
using outlier detection (geometric, distributional, and time series outliers),
model fitting, statistical goodness of fit, database duplicate finding, and data
type checks and data value constraints.

2.2.3 Semantic Integration of Heterogeneous Data

One of the many complex aspects in biomedical data mining is semantic
integration. Semantic integration combines multiple sources into a coherent
data store and involves finding semantically equivalent real-world entities
from several biomedical sources to be matched up. The problem arises when,
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for instance, the same entities do not have identical labels, such as, gene id
and g id, or are time asynchronous, as in the case of the same gene being
analyzed at multiple developmental stages. There is a theoretical foundation
[165] for approaching this problem by using correlation analysis in a general
case. Nonetheless, semantic integration of biomedical data is still an open
problem due to the complexity of the studied matter (bioontology) and the
heterogeneous distributed nature of the recorded high-dimensional data.

Currently, there are in general two approaches: (1) construction of
integrated biodata warehouses or biodatabases and (2) construction of a
federation of heterogeneous distributed biodatabases so that query processing
or search can be performed in multiple heterogeneous biodatabases. The
first approach performs data integration beforehand by data cleaning, data
preprocessing, and data integration, which requires common ontology and
terminology and sophisticated data mapping rules to resolve semantic
ambiguity or inconsistency. The integrated data warehouses or databases are
often multidimensional in nature, and indexing or other data structures can
be built to assist a search in multiple lower-dimensional spaces. The second
approach is to build up mapping rules or semantic ambiguity resolution rules
across multiple databases. A query posed at one site can then be properly
mapped to another site to retrieve the data needed. The retrieved results
can be appropriately mapped back to the query site so that the answer
can be understood with the terminology used at the query site. Although
a substantial amount of work has been done in the field of database systems
[137], there are not enough studies of systems in the domain of bioinformatics,
partly due to the complexity and semantic heterogeneity of biodata. We
believe this is an important direction of future research.

2.3 Exploration of Existing Data Mining Tools for
Biodata Analysis

With years of research and development, there have been many data
mining, machine learning, and statistical analysis systems and tools available
for use in biodata exploration and analysis. Comprehensive surveys and
the introduction of data mining methods have been compiled into many
textbooks [165, 171, 258, 281, 431]. There are also many textbooks focusing
exclusively on bioinformatics [28, 34, 110, 116, 248]. Based on the theoretical
descriptions of data mining methods, many general data mining and data
analysis systems have been built and widely used for necessary analyses of
biodata, e.g., SAS Enterprise Miner, SPSS, SPlus, IBM Intelligent Miner,
Microsoft SQLServer 2000, SGI MineSet, and Inxight VizServer. In this
section, we briefly summarize the different types of existing software tools
developed specifically for solving the fundamental bioinformatics problems.
Tables 2.1 and 2.2 provide a list of a few software tools and their Web links.
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Table 2.1. Partial list of bioinformatics tools and software links. These tools
were chosen based on authors’ familiarity. We recognize that there are many other
popular tools.

Sequence analysis
NCBI/BLAST:

http://www.ncbi.nih.gov/BLAST
ClustalW (multi-sequence alignment):

http://www.ebi.ac.uk/clustalw/
HMMER:

http://hmmer.wustl.edu/
PHYLIP:

http://evolution.genetics.washington.edu/phylip.html
MEME (motif discovery and search):

http://meme.sdsc.edu/meme/website/
TRANSFAC:

http://www.cbrc.jp/research/db/TFSEARCH.html
MDScan:

http://bioprospector.stanford.edu/MDscan/
VectorNTI:

http://www.informax.com
Sequencher:

http://www.genecodes.com/
MacVector:

http://www.accelrys.com/products/macvector/

Structure prediction and visualization
RasMol:

http://openrasmol.org/
Raster3D:

http://www.bmsc.washington.edu/raster3d/raster3d.html
Swiss-Model:

http://www.expasy.org/swissmod/
Scope:

http://scop.mrc-lmb.cam.ac.uk/scop/
MolScript:

http://www.avatar.se/molscript/
Cn3D:

http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml

2.3.1 DNA and Protein Sequence Analysis

Sequence comparison, similarity search, and pattern finding are considered
the basic approaches to protein sequence analysis in bioinformatics. The
mathematical theory and basic algorithms of sequence analysis can be dated
to 1960s when the pioneers of bioinformatics developed methods to predict
phylogenetic relationships of the related protein sequences during evolution
[281]. Since then, many statistical models, algorithms, and computation
techniques have been applied to protein and DNA sequence analysis.
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Table 2.2. Partial list of bioinformatics tools and software links.

Genome analysis
PHRED/PHRAP:

http://www.phrap.org/
CAP3:

http://deepc2.zool.iastate.edu/aat/cap/cap.html
Paracel GenomeAssembler:

http://www.paracel.com/products/paracel genomeassembler.php
GenomeScan:

http://genes.mit.edu/genomescan.html
GeneMark:

http://opal.biology.gatech.edu/GeneMark/
GenScan:

http://genes.mit.edu/GENSCAN.html
X-Grail:

http://compbio.ornl.gov/Grail-1.3/
ORF Finder:

http://www.ncbi.nlm.nih.gov/gorf/gorf.html
GeneBuilder:

http://l25.itba.mi.cnr.it/ webgene/genebuilder.html

Pathway analysis and visualization
KEGG:

http://www.genome.ad.jp/kegg/
EcoCyc/MetaCyc:

http://metacyc.org/
GenMapp:

http://www.genmapp.org/

Microarray analysis
ScanAlyze/Cluster/TreeView:

http://rana.lbl.gov/EisenSoftware.htm
Scanalytics: MicroArray Suite:

http://www.scanalytics.com/product/microarray/index.shtmlExpression
Profiler (Jaak Vilo, EBI):

http://ep.ebi.ac.uk/EP/
Knowledge-based analysis of microarray gene expression data using SVM:

http://www.cse.ucsc.edu/research/compbio/genex/genex.html
Silicon Genetics - gene expression software:

http://www.sigenetics.com/cgi/SiG.cgi/index.smf

Most sequence alignment tools were based on a dynamic programming
algorithm [373], including pairwise alignment tools such as the Basic Local
Alignment Search Tool (BLAST) [12] and multiple sequence alignment
tools such as ClustalW [176]. A series of tools was developed to construct
phylogenetic trees based on various probability models and sequence
alignment principles. Many of the phylogenetic tools have been packaged into
software packages, such as PHYLIP and PAUP* [124]. Hidden Markov models
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(HMM) is another widely used algorithm especially in (1) protein family
studies, (2) identification of protein structural motifs, and (3) gene structure
prediction (discussed later). HMMER, which is used to find conserved
sequence domains in a set of related protein sequences and the spacer regions
between them, is one of the popular HMM tools.

Other challenging search problems include promoter search and protein
functional motif search. Several probability models and stochastic methods
have been applied to these problems, including expectation maximization
(EM) algorithms and Gibbs sampling methods [28].

2.3.2 Genome Analysis

Sequencing of a complete genome and subsequent annotation of the features
in the genome pose different types of challenges. First, how is the whole
genome put together from many small pieces of sequences? Second, where are
the genes located on a chromosome? The first problem is related to genome
mapping and sequence assembly. Researchers have developed software tools
to assemble a large number of sequences using similar algorithms to the
ones used in the basic sequence analysis. The widely used algorithms include
PHRAP/Consed and CAP3 [188].

The other challenging problem is related to prediction of gene structures,
especially in eukaryotic genomes. The simplest way to search for a DNA
sequence that encodes a protein is to search for open reading frames (ORFs).
Predicting genes is generally easier and more accurate in prokaryotic than
eukaryotic organisms. The eukaryotic gene structure is much more complex
due to the intron/exon structure. Several software tools, such as GeneMark
[48] and Glimmer [343], can accurately predict genes in prokaryotic genomes
using HMM and other Markov models. Similar methodologies were used to
develop eukaryotic gene prediction tools such as GeneScan [58] and GRAIL
[408].

2.3.3 Macromolecule Structure Analysis

Macromolecule structure analysis involves (1) prediction of secondary
structure of RNA and proteins, (2) comparison of protein structures, (3)
protein structure classification, and (4) visualization of protein structures.
Some of the most popular software tools include DALI for structural
alignment, Cn3d and Rasmol for viewing the 3D structures, and Mfold
for RNA secondary structure prediction. Protein structure databases and
associated tools also play an important role in structure analysis. Protein
Data Bank (PDB), the classification by class, architecture, topology, and
homology (CATH) database, the structural classification of proteins (SCOP)
database, Molecular Modeling Database (MMDB), and Swiss-Model resource
are among the best protein structure resources. Structure prediction is still
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an unsolved, challenging problem. With the rapid development of proteomics
and high throughput structural biology, new algorithms and tools are very
much needed.

2.3.4 Pathway Analysis

Biological processes in a cell form complex networks among gene products.
Pathway analysis tries to build, model, and visualize these networks. Pathway
tools are usually associated with a database to store the information
about biochemical reactions, the molecules involved, and the genes. Several
tools and databases have been developed and are widely used, including
KEGG database (the largest collection of metabolic pathway graphs),
EcoCyc/MetaCyc [212] (a visualization and database tool for building and
viewing metabolic pathways), and GenMAPP (a pathway building tool
designed especially for working with microarray data). With the latest
developments in functional genomics and proteomics, pathway tools will
become more and more valuable for understanding the biological processes
at the system level (section 2.7).

2.3.5 Microarray Analysis

Microarray technology allows biologists to monitor genome-wide patterns of
gene expression in a high-throughput fashion. Applications of microarrays
have resulted in generating large volumes of gene expression data with several
levels of experimental data complexity. For example, a “simple” experiment
involving a 10,000-gene microarray with samples collected at five time points
for five treatments with three replicates can create a data set with 0.75 million
data points! Historically, hierarchical clustering [114] was the first clustering
method applied to the problem of finding similar gene expression patterns
in microarray data. Since then many different clustering methods have been
used [323], such as k-means, a self-organizing map, a support vector machine,
association rules, and neural networks. Several commercial software packages,
e.g., GeneSpring or Spotfire, offer the use of these algorithms for microarray
analysis.

Today, microarray analysis is far beyond clustering. By incorporating
a priori biological knowledge, microarray analysis can become a powerful
method for modeling a biological system at the molecular level. For example,
combining sequence analysis methods, one can identify common promoter
motifs from the clusters of coexpressed genes in microarray data using various
clustering methods. Furthermore, any correlation among gene expression
profiles can be modeled by artificial neural networks and can hopefully
reverse-engineer the underlying genetic network in a cell (section 2.7).
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2.4 Discovery of Frequent Sequential and
Structured Patterns

Frequent pattern analysis has been a focused theme of study in data mining,
and a lot of algorithms and methods have been developed for mining frequent
patterns, sequential patterns, and structured patterns [6, 165, 437, 438].
However, not all the frequent pattern analysis methods can be readily adopted
for the analysis of complex biodata because many frequent pattern analysis
methods are trying to discover “perfect” patterns, whereas most biodata
patterns contain a substantial amount of noise or faults. For example, a
DNA sequential pattern usually allows a nontrivial number of insertions,
deletions, and mutations. Thus our discussion here is focused on sequential
and structured pattern mining potential adaptable to noisy biodata instead
of a general overview of frequent pattern mining methods.

In bioinformatics, the discovery of frequent sequential patterns (such as
motifs) and structured patterns (such as certain biochemical structures) could
be essential to the analysis and understanding of the biological data. If a
pattern occurs frequently, it ought to be important or meaningful in some
way. Much work has been done on discovery of frequent patterns in both
sequential data (unfolded DNA, proteins, and so on) and structured data
(3D model of DNA and proteins).

2.4.1 Sequential Pattern

Frequent sequential pattern discovery has been an active research area for
years. Many algorithms have been developed and deployed for this purpose.
One of the most popular pattern (motif) discovery methods is BLAST [12],
which is essentially a pattern matching algorithm. In nature, amino acids
(in protein sequences) and nucleotides (in DNA sequences) may mutate.
Some mutations may occur frequently while others may not occur at all.
The mutation scoring matrix [110] is used to measure the likelihood of the
mutations.

Figure 2.1 is one of the scoring matrices. The entry associated with row
Ai and column Aj is the score for an amino acid Ai mutating to Aj . For
a given protein or DNA sequence S, BLAST will find all similar sequences
S′ in the database such that the aggregate mutation score from S to S′

is above some user-specified threshold. Since an amino acid may mutate to
several others, if all combinations need to be searched, the search time may
grow exponentially. To reduce the search time, BLAST partitions the query
sequence into small segments (3 amino acids for a protein sequence and 11
nucleotides for DNA sequences) and searches for the exact match on the small
segments and stitches the segments back up after the search. This technique
can reduce the search time significantly and yield satisfactory results (close
to 90% accuracy).
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Fig. 2.1. BLOSUM 50 mutation scoring matrix.

Tandem repeat (TR) detection is one of the active research areas. A
tandem repeat is a segment that occurs more than a certain number of times
within a DNA sequence. If a pattern repeats itself a significant number of
times, biologists believe that it may signal some importance. Due to the
presence of noise, the actual occurrences of the pattern may be different.
In some occurrences the pattern may be shortened—some nucleotide is
missing—while in other occurrences the pattern may be lengthened—a noise
nucleotide is added. In addition, the occurrence of a pattern may not follow
a fixed period. Several methods have been developed for finding tandem
repeats. In [442], the authors proposed a dynamic programming algorithm
to find all possible asynchronous patterns, which allows a certain type of
imperfection in the pattern occurrences. The complexity of this algorithm is
O(N2) where N is the length of the sequence.

The number of amino acids in a protein sequence is around several
hundred. It is useful to find some segments that appear in a number of
proteins. As mentioned, the amino acid may mutate without changing its
biological functions. Thus, the occurrences of a pattern may be different. In
[443], the authors proposed a model that takes into account the mutations
of amino acids. A mutation matrix is constructed to represent the likelihood
of mutation. The entry at row i and column j is the probability for amino
acid i to mutate to j. For instance, assume there is a segment ACCD in
a protein. The probability that it is mutated from ABCD is Prob(A|A) ×
Prob(C|B) × Prob(C|C) × Prob(D|D). This probability can be viewed as
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the expected chance of occurrences of the pattern ABCD given that the
protein segment ACCD is observed. The mutation matrix serves as a bridge
between the observations (protein sequences) and the true underlying models
(frequent patterns). The overall occurrence of a pattern is the aggregated
expected number of occurrences of the pattern in all sequences. A pattern is
considered frequent if its aggregated expected occurrences are over a certain
threshold. In addition, [443] also proposed a probabilistic algorithm that can
find all frequent patterns efficiently.

2.4.2 Mining Structured Patterns in Biodata

Besides finding sequential patterns, many biodata analysis tasks need to find
frequent structured patterns, such as frequent protein or chemical compound
structures from large biodata sets. This promotes research into efficient
mining of frequent structured patterns. Two classes of efficient methods
for mining structured patterns have been developed: one is based on the
apriori-like candidate generation and test approach [6], such as FSG [234],
and the other is based on a frequent pattern growth approach [166] by
growing frequent substructure patterns and reducing the size of the projected
patterns, such as gSpan [436]. A performance study in [436] shows that a
gSpan-based method is much more efficient than an FSG-based method.

Mining substructure patterns may still encounter difficulty in both the
huge number of patterns generated and mining efficiency. Since a frequent
large structure implies that all its substructures must be frequent as well,
mining frequent large, structured patterns may lead to an exponential growth
of search space because it would first find all the substructure patterns. To
overcome this difficulty, a recent study in [437] proposes to mine only closed
subgraph patterns rather than all subgraph patterns, where a subgraph G is
closed if there exists no supergraph G′ such as G ⊂ G′ and support(G) =
support(G′) (i.e., they have the same occurrence frequency). The set of closed
subgraph patterns has the same expressive power of the set of all subgraph
patterns but is often orders of magnitude more compact than the latter
in dense graphs. An efficient mining method called CloseGraph has been
developed in [437], which also demonstrates order-of-magnitude performance
gain in comparison with gSpan.

Figure 2.2 shows the discovered closed subgraph patterns for class
CA compounds from the AIDS antiviral screen compound dataset of the
Developmental Therapeutics Program of NCI/NIH (March 2002 release). One
can see that by lowering the minimum support threshold (i.e., occurrence
frequency), larger chemical compounds can be found in the dataset.

Such structured pattern mining methods can be extended to other data
mining tasks, such as discovering structure patterns with angles or geometric
constraints, finding interesting substructure patterns in a noisy environment,
or classifying data [99]. For example, one can use the discovered structure
patterns to distinguishing AIDS tissues from healthy ones.



24 Data Mining in Bioinformatics

OH

ON

O

N

(a) min supp = 20%

OHO

N

N+

NH

N

O

N

HO

(b) min sup = 10%

N

N

S

OH

S

HO
O

O

N

N

O

O

(c) min supp = 5%

Fig. 2.2. Discovered substructures from an antiviral screen compound dataset.

2.5 Classification Methods

Each biological object may consist of multiple attributes. The relationship/
interaction among these attributes could be very complicated. In
bioinformatics, classification is one of the popular tools for understanding the
relationships among various conditions and the features of various objects.
For instance, there may be a training dataset with two classes of cells, normal
cells and cancer cells. It is very important to classify these cells so that
when a new cell is obtained, it can be automatically determined whether
it is cancerous. Classification has been an essential theme in statistics,
data mining, and machine learning, with many methods proposed and
studied [165, 171, 275, 431]. Typical methods include decision trees, Bayesian
classification, neural networks, support vector machines (SVMs), the k-
nearest neighbor (KNN) approach, associative classification, and so on. We
briefly describe three methods: SVM, decision tree induction, and KNN.

The support vector machine (SVM) [59] has been one of the most popular
classification tools in bioinformatics. The main idea behind SVM is the
following. Each object can be mapped as a point in a high-dimensional space.
It is possible that the points of the two classes cannot be separated by a
hyperplane in the original space. Thus, a transformation may be needed.
These points may be transformed to a higher dimensional space so that they
can be separated by a hyperplane. The transformation may be complicated. In
SVM, the kernel is introduced so that computing the separation hyperplane
becomes very fast. There exist many kernels, among which three are the
most popular: linear kernel, polynomial kernel, and Gaussian kernel [353].
SVM usually is considered the most accurate classification tool for many
bioinformatics applications. However, there is one drawback: the complexity
of training an SVM is O(N2) where N is the number of objects/points. There
are recent studies, such as [444], on how to scale up SVMs for large datasets.
When handling a large number of datasets, it is necessary to explore scalable
SVM algorithms for effective classification.

Another popularly used classifier is the decision-tree classifier [171, 275].
When the number of dimensions is low, i.e., when there exist only a small
number of attributes, the accuracy of the decision tree is comparable to that
of SVM. A decision tree can be built in linear time with respect to the
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number of objects. In a decision tree, each internal node is labeled with a list
of ranges. A range is then associated with a path to a child. If the attribute
value of an object falls in the range, then the search travels down the tree via
the corresponding path. Each leaf is associated with a class label. This label
will be assigned to the objects that fall in the leaf node. During the decision
tree construction, it is desirable to choose the most distinctive features or
attributes at the high levels so that the tree can separate the two classes as
early as possible. Various methods have been tested for choosing an attribute.
The decision tree may not perform well with high-dimensional data.

Another method for classification is called k-nearest neighbor (KNN)
[171]. Unlike the two preceding methods, the KNN method does not build a
classifier on the training data. Instead, when a test object arrives, it searches
for the k neighboring points closest to the test object and uses their labels
to label the new object. If there are conflicts among the neighboring labels,
a majority voting algorithm is applied. Although this method does not incur
any training time, the classification time may be expensive since finding KNN
in a high-dimensional space is a nontrivial task.

2.6 Cluster Analysis Methods

Clustering is a process that groups a set of objects into clusters so that
the similarity among the objects in the same cluster is high, while that
among the objects in different clusters is low. Clustering has been popular
in pattern recognition, marketing, social and scientific studies, as well as in
biodata analysis. Effective and efficient cluster analysis methods have also
been studied extensively in statistics, machine learning, and data mining,
with many approaches proposed [165, 171], including k-means, k-medoids,
SOM, hierarchical clustering (such as DIANA [216], AGNES [216], BIRCH
[453], and Chameleon [215]), a density-based approach (such as Optics [17]),
and a model-based approach. In this section, we introduce two recently
proposed approaches for clustering biodata: (1) clustering microarray data
by biclustering or p-clustering, and (2) clustering biosequence data.

2.6.1 Clustering Microarray Data

Microarray has been a popular method for representing biological data. In
the microarray gene expression dataset, each column represents a condition,
e.g., arobetic, acid, and so on. Each row represents a gene. An entry is
the expression level of the gene under the corresponding condition. The
expression level of some genes is low across all the conditions while others
have high expression levels. The absolute expression level may be a good
indicator not of the similarity among genes but of the fluctuation of the
expression levels. If the genes in a set exhibit similar fluctuation under all
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conditions, these genes may be coregulated. By discovering the coregulation,
we may be able to refer to the gene regulative network, which may enable
us to better understand how organisms develop and evolve. Row clustering
[170] is proposed to cluster genes that exhibit similar behavior or fluctuation
across all the conditions.

However, clustering based on the entire row is often too restricted. It
may reveal the genes that are very closely coregulated. However, it cannot
find the weakly regulated genes. To relax the model, the concept of bicluster
was introduced in [74]. A bicluster is a subset of genes and conditions such
that the subset of genes exhibits similar fluctuations under a given subset
of conditions. The similarity among genes is measured as the squared mean
residue error. If the similarity measure (squared mean residue error) of a
matrix satisfies a certain threshold, it is a bicluster. Although this model is
much more flexible than the row clusters, the computation could be costly due
to the absence of pruning power in the bicluster model. It lacks the downward
closure property typically associated with frequent patterns [165]. In other
words, if a supermatrix is a bicluster, none of its submatrixes is necessarily
a bicluster. As a result, one may have to consider all the combinations of
columns and rows to identify all the biclusters. In [74], a nondeterministic
algorithm is devised to discover one bicluster at a time. After a bicluster is
discovered, its entries will be replaced by random value and a new bicluster
will be searched for in the updated microarray dataset. In this scheme, it
may be difficult to discover the overlapped cluster because some important
value may be replaced by random value. In [441], the authors proposed a new
algorithm that can discover the overlapped biclusters.

Bicluster uses squared mean residue error as the indicator of similarity
among a set of genes. However, this leads to a problem: For a set of genes that
are highly similar, the squared mean residue error could still be high. Even
after including a new random gene in the cluster, the resulting cluster should
also have high correlation; as a result, it may still qualify as a bicluster.
To solve this problem, the authors of [421] proposed a new model, called
p-clusters. In the p-cluster model, it is required that any 2-by-2 submatrix
(two genes and two conditions) [x11, x12, y11, y12] of a p cluster satisfies the
formula |(x11 − x12) − (y11 − y12)| ≤ δ where δ is some specified threshold.
This requirement is able to remove clusters that are formed by some strong
coherent genes and some random genes. In addition, a novel two-way pruning
algorithm is proposed, which enables the cluster discovery process be carried
out in a more efficient manner on average [421].

2.6.2 Clustering Sequential Biodata

Biologists believe that the functionality of a gene depends largely on its
layout or the sequential order of amino acids or nucleotides. If two genes
or proteins have similar components, their functionality may be similar.
Clustering the biological sequences according to their components may
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reveal the biological functionality among the sequences. Therefore, clustering
sequential data has received a significant amount of attention recently. The
foundation of any clustering algorithm is the measure of similarity between
two objects (sequences). Various measurements have been proposed. One
possible approach is the use of edit distance [160] to measure the distance
between each pair of sequences. This solution is not ideal because, in addition
to its inefficiency in calculation, the edit distance captures only the optimal
global alignment between a pair of sequences; it ignores many other local
alignments that often represent important features shared by the pair of
sequences. Consider the three sequences aaaabbb, bbbaaaa, and abcdefg. The
edit distance between aaaabbb and bbbaaaa is 6 and the edit distance between
aaaabbb and abcdefg is also 6, to a certain extent contradicting the intuition
that aaaabbb is more similar to bbbaaaa than to abcdefg. These overlooked
features may be very crucial in producing meaningful clusters. Even though
allowing block operations1 [258, 291] may alleviate this weakness to a certain
degree, the computation of edit distance with block operations is NP-hard
[291]. This limitation of edit distance, in part, has motivated researchers to
explore alternative solutions.

Another approach that has been widely used in document clustering is
the keyword-based method. Instead of being treated as a sequence, each
text document is regarded as a set of keywords or phrases and is usually
represented by a weighted word vector. The similarity between two documents
is measured based on keywords and phrases they share and is often defined in
some form of normalized dot-product. A direct extension of this method to
generic symbol sequences is to use short segments of fixed length q (generated
using a sliding window through each sequence) as the set of “words” in the
similarity measure. This method is also referred to in the literature [154]
as the q-gram based method. While the q-gram based approach enables
significant segments (i.e., keywords/phrases/q grams) to be identified and
used to measure the similarity between sequences regardless of their relative
positions in different sequences, valuable information may be lost as a result
of ignoring sequential relationship (e.g., ordering, correlation, dependency,
and so on) among these segments, which impacts the quality of clustering.

Recently statistics properties of sequence construction were used to
assess the similarity among sequences in a sequence clustering system,
CLUSEQ [441]. Sequences belonging to one cluster may subsume to the
same probability distribution of symbols (conditioning on the preceding
segment of a certain length), while different clusters may follow different
underlying probability distributions. This feature, typically referred to as
short memory, which is common to many applications, indicates that, for a
certain sequence, the empirical probability distribution of the next symbol
given the preceding segment can be accurately approximated by observing

1A consecutive block can be inserted/deleted/shifted/reversed in a sequence with
a constant cost with regard to the edit distance.
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no more than the last L symbols in that segment. Significant features of
such probability distribution can be very powerful in distinguishing different
clusters. By extracting and maintaining significant patterns characterizing
(potential) sequence clusters, one could easily determine if a sequence should
belong to a cluster by calculating the likelihood of (re)producing the sequence
under the probability distribution that characterizes the given cluster. To
support efficient maintenance and retrieval of the probability entries,2 a
novel variation of the suffix tree [157], namely the probabilistic suffix tree
(PST), is proposed in [441], and it is employed as a compact representation
for organizing the derived (conditional) probability distribution for a cluster
of sequences. A probability vector is associated with each node to store the
probability distribution of the next symbol given the label of the node as the
preceding segment. These innovations enable the similarity estimation to be
performed very fast, which offers many advantages over alternative methods
and plays a dominant role in the overall performance of the clustering
algorithm.

2.7 Computational Modeling of Biological Networks

Computational modeling of biological networks has gained much of its
momentum as a result of the development of new high-throughput
technologies for studying gene expressions (e.g., microarray technology) and
proteomics (e.g., mass spectrometry, 2D protein gel, and protein chips). Large
amounts of data generated by gene microarray and proteomics technologies
provide rich resources for theoretic study of the complex biological system.
Recent advances in this field have been reviewed in several books [29, 49].

2.7.1 Biological Networks

The molecular interactions in a cell can be represented using graphs of
network connections similar to the network of power lines. A set of connected
molecular interactions can be considered as a pathway. The cellular system
involves complex interactions between proteins, DNA, RNA, and smaller
molecules and can be categorized in three broad subsystem: metabolic network
or pathway, protein network, and genetic or gene regulatory network.

Metabolic network represents the enzymatic processes within a cell,
which provide energy and building blocks for the cell. It is formed by the
combination of a substrate with an enzyme in a biosynthesis or degradation
reaction. Typically a mathematical representation of the network is a graph
with vertices being all the compounds (substrates) and the edges linking two
adjacent substrates. The catalytic activity of enzymes is regulated in vivo by

2Even though the hidden Markov model can be used for this purpose, its
computational inefficiency prevents it from being applied to a large dataset.



Survey of Biodata Analysis from a Data Mining Perspective 29

multiple processes including allosteric interactions, extensive feedback loops,
reversible covalent modifications, and reversible peptide-bond cleavage [29].
For well-studied organisms, especially microbes such as E. coli, considerable
information about metabolic reactions has been accumulated through many
years and organized into large online databases, such as EcoCyc [212].

Protein network is usually meant to describe communication and
signaling networks where the basic reaction is between two proteins. These
protein-protein interactions are involved in signal transduction cascade such
as p53 signaling pathway. Proteins are functionally connected by post-
translational, allosteric interactions, or other mechanisms into biochemical
circuits [29].

Genetic network or regulatory network refers to the functional inference
of direct causal gene interactions. According to the Central Dogma DNA →
RNA → Protein → functions, gene expression is regulated at many molecular
levels. Gene products interact at different levels. The analysis of large-scale
gene expression can be conceptualized as a genetic feedback network. The
ultimate goal of microarray analysis is the complete reverse engineering of the
genetic network. The following discussion will focus on the genetic network
modeling.

2.7.2 Modeling of Networks

A systematic approach to modeling regulatory networks is essential to
the understanding of their dynamics. Network modeling has been used
extensively in social and economical fields for many years [377]. Recently
several high-level models have been proposed for the regulatory network
including Boolean networks, continuous systems of coupled differential
equations, and probabilistic models. These models have been summarized
by Baldi and Hartfield [29] as follows.

Boolean networks assume that a protein or a gene can be in one of two
states: active or inactive, symbolically represented by 1 or 0. This binary
state varies in time and depends on the state of the other genes and proteins
in the network through a discrete equation:

Xi(t + 1) = Fi[X1(t), . . . , XN (t)], (2.1)

where function Fi is a Boolean function for the update of the ith element
as a function of the state of the network at time t [29]. Figure 2.3 gives a
simple example. The challenge of finding a Boolean network description lies
in inferring the information about network wiring and logical rules from the
dynamic output (see Figure 2.3) [252].

Gene expression patterns contain much of the state information of
the genetic network and can be measured experimentally. We are facing
the challenge of inferring or reverse-engineering the internal structure of
this genetic network from measurements of its output. Genes with similar
temporal expression patterns may share common genetic control processes
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(c) Dynamic output

Fig. 2.3. Target Boolean network for reverse engineering: (a) The network wiring
and (b) logical rules determine (c) the dynamic output.

and may therefore be related functionally. Clustering gene expression patterns
according to a similarity or distance measure is the first step toward
constructing a wiring diagram for a genetic network [378].

Continuous model/Differential equations can be an alternative model to
the Boolean network. In this model, the state variables X are continuous and
satisfy a system of differential equations of the form

dXi

dt
= Fi[X1(t), . . . , XN (t), I(t)], (2.2)

where the vector I(t) represents some external input into the system. The
variables Xi can be interpreted as representing concentrations of proteins or
mRNAs. Such a model has been used to model biochemical reactions in the
metabolic pathways and gene regulation. Most of the models do not consider
spatial structure. Each element in the network is characterized by a single
time-dependent concentration level. Many biological processes, however, rely
heavily on spatial structure and compartmentalization. It is necessary to
model the concentration in both space and time with a continuous formalism
using partial differential equations [29].

Bayesian networks are provided by the theory of graphical models in
statistics. The basic idea is to approximate a complex multidimensional
probability distribution by a product of simpler local probability
distributions. A Bayesian network model for a genetic network can be
presented as a directed acyclic graph (DAG) with N nodes. The nodes may
represent genes or proteins and the random variables Xi levels of activity.
The parameters of the model are the local conditional distributions of each
random variable given the random variables associated with the parent nodes,

P (X1, . . . , XN ) =
∏

i

P (Xi|Xj : j ∈ N (i)), (2.3)

where N (i) denotes all the parents of vertex i. Given a data set D representing
expression levels derived using DNA microarray experiments, it is possible
to use learning techniques with heuristic approximation methods to infer
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the network architecture and parameters. However, data from microarray
experiments are still limited and insufficient to completely determine a single
model, and hence people have developed heuristics for learning classes of
models rather than single models, for instance, models for a set of coregulated
genes [29].

2.8 Data Visualization and Visual Data Mining

The need for data visualization and visual data mining in the biomedical
domain is motivated by several factors. First, it is motivated by the
huge size, the great complexity and diversity of biological databases; for
example, a complete genome of the yeast Saccharomyces cerevisiae is 12
million base pairs, of humans 3.2 billion base pairs. Second, the data-
producing biotechnologies have been progressing rapidly and include spotted
DNA microarrays, oligonucleotide microarrays, and serial analyses of gene
expression (SAGE). Third, the demand for bioinformatics services has been
dramatically increasing since the biggest scientific obstacles primarily lie in
storage and analysis [181]. Finally, visualization tools are required by the
necessary integration of multiple data resources and exploitation of biological
knowledge to model complex biological systems. It is essential for users to
visualize raw data (tables, images, point information, textual annotations,
other metadata), preprocessed data (derived statistics, fused or overlaid sets),
and heterogeneous, possibly distributed, resulting datasets (spatially and
temporally varying data of many types).

According to [122], the types of visualization tools can be divided into (1)
generic data visualization tools, (2) knowledge discovery in databases (KDD)
and model visualization tools, and (3) interactive visualization environments
for integrating data mining and visualization processes.

2.8.1 Data Visualization

In general, visualization utilizes the capabilities of the human visual system to
aid data comprehension with the help of computer-generated representations.
The number of generic visualization software products is quite large and
includes AVS, IBM Visualization Data Explorer, SGI Explorer, Visage,
Khoros, S-Plus, SPSS, MatLab, Mathematica, SciAn, NetMap, SAGE, SDM
and MAPLE. Visualization tools are composed of (1) visualization techniques
classified based on tasks, data structure, or display dimensions, (2) visual
perception type, e.g., selection of graphical primitives, attributes, attribute
resolution, the use of color in fusing primitives, and (3) display techniques,
e.g., static or dynamic interactions; representing data as line, surface or
volume geometries; showing symbolic data as pixels, icons, arrays or graphs
[122]. The range of generic data visualization presentations spans line
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graphs, scatter plots, 2D isosurfaces, 3D isosurfaces, rubber sheets, volume
visualizations, parallel coordinates, dimensional stacking, ribbons with twists
based on vorticity, streaklines using three time frames, combinations of
slicing and isosurface, and scalar or vector or star glyphs. Most of these
visualization forms are well suited for two-, three-, and four-dimensional
data. However, special attention should be devoted to high-dimensional
data visualization since biomedical information visualization quite often
involves displaying heterogeneous multidimensional data. The list of high-
dimensional table visualizations includes parallel coordinates, dimensional
stacking (general logic diagrams or multiple nesting of dimensions using
treemaps to display a 5D view of the DNA Exon/Intron data), multiple line
graphs, scatter plot matrices (e.g., hyperslice and hyperbox), multiple bar
charts, permutation matrices, survey “point-to-line” graphs, animations of
scatter plots (the Grand Tour or the projection pursuit techniques), “point-
to-curve” graphs (Andrew’s curves), glyphs and icon-based visualization,
the display of recursive correlation between dimensions (fractal foams),
radial or grid or circular parallel coordinate visualizations (Radviz, Gridviz,
overlapping star plots), and finally clustering visualization using dendrograms
or Kohonen nets [122]. The most frequent high-dimensional biomedical
data visualization is clustering visualization because of its direct use in
studies searching for similarities and differences in biological materials.
Nonetheless, one should also mention the applications of other sophisticated
visualization systems, such as virtual reality environments for exploratory
and training purposes, collaborative visualization systems for basic research
(NCSA Biology Workbench), and telemedicine and telesurgery. In future,
collaborative visualization systems would benefit from grid computing,
scalable visualization capabilities, and integration with the tools providing
qualitative views of a dataset [267].

2.8.2 KDD and Model Visualization

Visual data mining discovers implicit and useful knowledge from large
data sets using data and/or knowledge visualization techniques [165]. It
is the human visual and brain system that gives us the power of data
model understanding and phenomenon comprehension based on visual data
mining. While KDD and data mining experts focus on the KDD process
and generate data models, researchers studying human computer interfaces,
computer graphics, multimedia systems, pattern recognition, and high-
performance computing work on effective visual data model visualizations.
The benefits of data-mining model visualization are threefold [122]. First,
anyone conducting the data analysis has to trust the developed model. In
addition to good quantitative measures of “trust,” visualization can reveal
several model aspects to increase our trust. Second, good model visualization
improves understanding of the model, especially semantic understanding.
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Third, several data mining techniques lead to multiple data models, and
it is natural to ask questions about model comparisons.

Comparing many data models requires establishing appropriate metrics,
visualizing model differences, and interpreting the differences. Thus,
appropriate model visualization is critical for interpreting data. In the
biomedical domain, visual data mining delivers presentations of data mining
models and helps interpret them in the biological domain. For example,
visualization of decision trees, clusters, and generalized or association rules
does not fulfill its purpose unless an expert biologist can connect the visual
data model representation with the underlying biological phenomenon. Thus,
many commercial software packages support model visualization tools, for
instance, software by Spotfire, InforMax, or Affymetrics. Nevertheless, there
is still a need to develop a metric to evaluate effectiveness of the variety of
visualization tools and to permeate the KDD process with visualization to
give useful insights about data. Figure 2.4 shows how microarray processing
steps can be combined with visual data mining (inspection) of spot features
and labels obtained by clustering.

Fig. 2.4. Example of visualization combined with visual inspection of spotted DNA
microarray data using I2K software developed at NCSA.
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2.8.3 Integration of Data Mining and Visualization Processes

Having available all generic visualization tools and visualizations of data
models, one would like to build an environment for visualization of the
knowledge discovery in databases (KDD) process including exploratory data
mining. In the KDD process, defined as the process of discovering useful
knowledge within data [123], exploratory data mining is a class of methods
used by the KDD process to find a pattern that is valid, novel, potentially
useful, and ultimately understandable [122]. From a user viewpoint, the role
of a user can be either passive, e.g., viewing data without any significant
influence on the conducted data mining, or active, e.g., making decisions
based on presented information visualization. In addition, the integration of
data mining and visualization should be realized by various combinations
of data mining and visualization components and characterized by seamless
interface and repeatable execution at any workflow point. From a software
design viewpoint, the integration environment has to be designed (a) with
modular components performing individual workflow steps and (b) with
common data objects so that the objects can be easily passed between
processing and visualization components [122]. There are several software
integration packages, e.g., D2K by NCSA and Iris Explorer by SGI, that meet
these integration requirements by using a visual programming paradigm.

In the biomedical domain, integration challenges remain in developing
software tools and environments that can be used for solving biological
problems rather than general data mining problems. For example, there is a
need for an integrated data workflow for (a) comparative studies visualizing
comparisons of genes from different species, (b) multilevel studies visualizing
phylogenetic trees at several levels of detail, (c) interactive studies visualizing
polymer docking for drug design, and (d) mapping gene function in the
embryo [267]. Building software environments of this kind requires not only
bringing together data mining and visualization researchers but also unifying
the domain-specific languages for common elements, e.g., defining terms
for input and output data variables, intermediate data products, and user
interfaces. This type of project has been demonstrated by Variagenics, Inc.
and Small Design Firm in a nucleic acid sequence of the human genome
consisting of 3.2 billion base pairs and displayed in a coherent three-
dimensional space while preserving accurate spatial and size relationships
[3]. The last but not the least important issue is related to visualization
of the exponentially increasing volume of biological data that must utilize
distributed computational resources and interoperability of all existing tools.
This issue is being addressed by the development of (a) policies on data
sharing and standards [51, 381], (b) computational grids, and (c) visualization
techniques for large data sets [162].
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2.9 Emerging Frontiers

There are many emerging technologies and research frontiers in
bioinformatics. In this section, we present two emerging frontiers in
bioinformatics research: text mining in bioinformatics and systems biology.

2.9.1 Text Mining in Bioinformatics

Bioinformatics and biodata analysis involve worldwide researchers and
practitioners from many different fields: genetics, biochemistry, molecular
biology, medical science, statistics, computer science, and so on. It becomes
a challenging task to find all the related literature and publications studying
the same genes and proteins from different aspects. This task is made even
more demanding by the huge number of publications in electronic form that
are accessible in medical literature databases on the Web.

The number of studies concerning automated mining of biochemical
knowledge from digital repositories of scientific literature, such as MEDLINE
and BIOSIS, has increased significantly. The techniques have progressed
from simple recognition of terms to extraction of interaction relationships
in complex sentences, and search objectives have broadened to a range of
problems, such as improving homology search, identifying cellular location,
and deriving genetic network technologies [179].

Natural language processing (NLP), also called computational linguistics
or natural language understanding, attempts to process text and deduce its
syntactic and semantic structure automatically. The two primary aspects of
natural language are syntax and lexicon. Syntax defines structures such as the
sentence made up of noun phrases and verb phrases. The smallest structural
entities are words, and information about words is kept in a lexicon, which
is a machine-readable dictionary that may contain a good deal of additional
information about the properties of the words. Many techniques have been
developed to construct lexicons and grammars automatically. For example,
starting with a modest amount of manually parsed text, a parser can be
“trained” by constructing rules that match the manually produced structures.
This is a machine learning approach. Other kinds of analysis methods look
for certain regularities in massive amounts of text. This is the statistical
approach. NLP has become an important area over the last decade with the
increasing availability of large, on-line corpora [23, 380].

The earliest work focused on tasks using only limited linguistic context
and processing at the level of words, such as identifying protein names, or
on tasks relying on word cooccurrence and pattern matching. The field now
has progressed into the area of recognizing interactions between proteins and
other molecules. There are two main methods in this area. The first approach
is based on occurrence statistics of gene names from MEDLINE documents
to predict the connections among genes [386]. The second approach uses
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specific linguistic structures to extract protein interaction information from
MEDLINE documents [105].

Besides the recognition of protein interactions from scientific text, NLP
has been applied to a broad range of information extraction problems in
biology. Combining with the Unified Medical Language System (UMLS),
NLP has been used for learning ontology relations in medical databases and
identifying the structure of noun phrases in MEDLINE texts. Incorporating
literature similarity in each iteration of PSI-BLAST search has shown
that supplementing sequence similarity with information from biomedical
literature search could increase the accuracy of homology search results.
Methods have also been developed (a) to cluster MEDLINE abstracts into
“themes” based on a statistical treatment of terms and unsupervised machine
learning, and (b) to classify terms derived from standard term-weighting
techniques to predict the cellular location of proteins from description
abstracts [179].

2.9.2 Systems Biology

System-level understanding, the approach advocated in systems biology,
requires a shift in focus from understanding genes and proteins to
understanding a system’s structure and dynamics [191]. A system-level
understanding of a biological system can be derived from an insight into four
key properties, according to the prominent systems biologist Kitano [225]:

1. System structures. These include the network of gene interactions
and biochemical pathways, as well as the mechanisms by which
such interactions modulate the physical properties of intracellular and
multicellular structures.

2. System dynamics. The principles about how a system behaves over time
under various conditions can be understood through metabolic analysis,
sensitivity analysis, dynamic analysis methods such as phase portrait and
bifurcation analysis, and by identifying essential mechanisms underlying
specific behaviors.

3. The control method. The mechanisms that systematically control the
state of the cell can be modulated to minimize malfunctions and provide
potential therapeutic targets for treatment of disease.

4. The design method. Strategies to modify and construct biological systems
having desired properties can be devised based on definite design
principles and simulations.

Computational biology has two distinct branches: (1) knowledge
discovery, or data mining, which extracts the hidden patterns from huge
quantities of experimental data, forming hypotheses as a result, and (2)
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simulation-based analysis, which tests hypotheses with in silico experiments,
providing predictions to be tested by in vitro and in vivo studies [224].

Although traditional bioinformatics has been used widely for genome
analysis, simulation-based approaches have received little mainstream
attention. Current experimental molecular biology is now producing the
high-throughput quantitative data that is needed to support simulation-
based research. At the same time, substantial advances in software and
computational power have enabled the creation and analysis of reasonably
realistic yet intricate biological models [224].

It is crucial for individual research groups to be able to exchange
their models and create commonly accepted repositories and software
environments that are available to all. Systems Biology Markup Language
(SBML) [189], CellML (http://www.cellml.org/), and the Systems Biology
Workbench are examples of efforts that aim to form a de facto standard and
open software platform for modeling and analysis. These efforts significantly
increase the value of the new generation of databases concerned with
biological pathways, such as the Kyoto Encyclopedia of Genes and Genomes
(KEGG), Alliance for Cellular Signaling (AfCS), and Signal Transduction
Knowledge Environment (STKE), by enabling them to develop machine-
executable models rather than merely human-readable forms [224].

Building a full-scale organism model or even a whole-cell or organ model is
a challenging enterprise. Several groups, such as Virtual Cell [348] and E-Cell
[405], have started the process. Multiple aspects of biological processes have
to be integrated and the model predictions must be verified by biological
and clinical data, which are at best sparse for this purpose. Integrating
heterogeneous simulation models is a nontrivial research topic by itself,
requiring integration of data of multiple scales, resolutions, and modalities.

2.9.3 Open Research Problems

The future of bioinformatics and data mining faces many open research
problems in order to meet the requirements of high-throughput biodata
analysis. One of the open problems is data quality maintenance related to
(a) experimental noise, e.g., the hybridization process and microarray spot
irregularities, and (b) the statistical significance of experiments, e.g., the
number of experimental replicas and their variations. Other open problems
include unknown model complexity and visualization difficulties with high-
dimensional data related to our limited understanding of underlying
phenomena. Although dimensionality reduction approaches reduce the
number of data dimensions, they also introduce the problems of feature
selection and feature construction. It has also become very clear over
the last few years that the growing size of bioinformatics data poses
new challenges on file standards, data storage, access, data mining, and
information retrieval. These open research problems can be solved in future
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by forming interdisciplinary teams, consolidating technical terms, introducing
standards, and promoting interdisciplinary education.

How to integrate biological knowledge into the designing and developing of
data mining models and algorithms is an important future research direction.
There exists an extensive amount of information or knowledge about the
biological data. For instance, the functionality of the majority of yeast genes
is captured in the gene ontology (GO). The GO is a directed acyclic graph
(DAG) that illustrates the relationship (similarity) among the genes. If we
can combine this information into the data mining process, e.g., in clustering
algorithms, then we can produce more biologically meaningful clusters with
higher efficiency. Currently, integration of biological knowledge in the data
mining procedure is still a challenging problem. It is desirable to find a way
to represent prior biological knowledge as a model that can be integrated into
the data mining process.

Recently, many researchers have realized that although a good number
of genes have been discovered and have been playing an important role in
the analysis of genetic and proteomic behaviors of biological bodies, the
discovered genes are only about 1% to 2% of human (or animal) genome;
most of the genome belongs to so-called “dark” matter, such as introns and
“junk.” However, recent studies have shown that a lot of biological functions
are strongly influenced or correlated with the dark part of the genome, and
it is a big open problem to find the rules or regularities that may disclose
the mystery of the “dark matter” of a genome. This should be an interesting
research problem that data mining may contribute to as well.

2.10 Conclusions

Both data mining and bioinformatics are fast-expanding and closely related
research frontiers. It is important to examine the important research issues
in bioinformatics and develop new data mining methods for scalable and
effective biodata analysis.

In this chapter, we have provided a short overview of biodata analysis
from a data mining perspective. Although a comprehensive survey of all
kinds of data mining methods and their potential or effectiveness in biodata
analysis is well beyond the task of this short survey, the selective examples
presented here may give readers an impression that a lot of interesting work
has been done in this joint venture. We believe that active interactions
and collaborations between these two fields have just started. It is a highly
demanding and promising direction, and a lot of exciting results will appear
in the near future.
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AntiClustAl: Multiple Sequence Alignment
by Antipole Clustering

Cinzia Di Pietro, Alfredo Ferro, Giuseppe Pigola,
Alfredo Pulvirenti, Michele Purrello, Marco Ragusa,
and Dennis Shasha

Summary
In this chapter, we present a new multiple sequence alignment algorithm
called AntiClustAl. The method makes use of the commonly used idea
of aligning homologous sequences belonging to classes generated by
some clustering algorithm and then continuing the alignment process
in a bottom-up way along a suitable tree structure. The final result
is then read at the root of the tree. Multiple sequence alignment in
each cluster makes use of progressive alignment with the 1-median
(center) of the cluster. The 1-median of set S of sequences is the element
of S that minimizes the average distance from any other sequence
in S. Its exact computation requires quadratic time. The basic idea
of our proposed algorithm is to make use of a simple and natural
algorithmic technique based on randomized tournaments, an idea that
has been successfully applied to large-size search problems in general
metric spaces. In particular, a clustering data structure called antipole
tree and an approximate linear 1-median computation are used. Our
algorithm enjoys a better running time with equivalent alignment
quality compared with ClustalW, a widely used tool for multiple
sequence alignment. A successful biological application showing high
amino acid conservation during evolution of Xenopus laevis SOD2 is
illustrated.

3.1 Introduction

Multiple sequence alignment is the process of taking three or more input
sequences and forcing them to have the same length by inserting a universal
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gap symbol − in order to maximize their similarity as measured by a
scoring function. In the case of biological sequences (DNA, RNA, protein),
the resulting aligned sequences can be used for two purposes: first, to find
regions of similarity defining a conserved consensus pattern of characters
(nucleotides or amino acids) in all the sequences; second, if the alignment
is particularly strong, to use the aligned positions to infer some possible
evolutionary relationships among the sequences.

Formally, the problem is the follows: let Σ be an alphabet and S =
{S1, . . . , Sk} be a set of string defined over Σ. A multiple sequence alignment
of S is a set S ′ = {S′

1, . . . , S′
k} such that

• S′
i ∈ (Σ ∪ {−})∗ for each i = 1, . . . , k

• Si is obtained from S′
i by dropping all gap symbols {−}

• |S′
1| = |S′

2| = . . . = |S′
k|

A scoring function defined on the alphabet Σ is a map σ : (Σ ∪ {−})k �→ R.
It has the following properties:

1. Reflexivity (maximum score if all the same) σ(a, ...., a) ≥ σ(a1, ..., ak),
provided a 	= −.

2. Symmetry (it doesn’t matter where differences are found, so the score is
based on the evaluation of the multiset of characters in the argument):
σ(x1, ..., xi, a, xi+2, ..., xj , b, xj+2, ..., xk)
= σ(x1, ..., xi, b, xi+2, ..., xj , a, xj+2, ..., xk)

3. Triangle inequality (recall that similarity is the opposite of distance):
σ(x1, ..., xi, a, xi+2, ..., xj , b, xj+2, ..., xk)
+σ(x1, ..., xi, b, xi+2, ..., xj , c, xj+2, ..., xk)
≥ σ(x1, ..., xi, a, xi+2, ..., xj , c, xj+2, ..., xk)

The best score D(|S1|, |S2|, . . . , |Sk|) for aligning k sequences S1, S2, . . . , Sk

with respect to σ is the one that maximizes the sum of the σs across all
positions:

∑
i∈1..n σ(S′

1[i], S
′
2[i] . . . S

′
k[i]). If |S1| = |S2| = |Sk| = n, then

the space and the time complexity of the best currently known algorithm
is O(nk) and O(2knk) × O(computation of the σ function), respectively.
Finding the optimal solution of the multiple sequence alignment therefore
requires exponential space and time complexity. If only pairwise alignment is
considered, then an O(n2/ log n)) algorithm can be obtained [88].

The most successful solution to the problem has been provided by the
program ClustalW [177]. In this chapter, we propose a new solution based
on a top-down “bisector tree” [70] clustering algorithm called antipole tree
and a linear approximate 1-median computation. Since exact 1-median
computation requires a quadratic number of distance calculations and given
that each of such distance computations may require quadratic time in
the length of the biosequences, the use of a linear approximate 1-median
computation may give a much better running time.

Both clustering and approximate 1-median computation algorithms make
use of a very simple and natural technique based on randomized tournaments.
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Given a set S of sequences to be aligned, we play the following tournament.
At each round, the winners of the previous round are randomly partitioned
into subsets of a fixed size t. Then a procedure finds each subset’s 1-median
and discards it. Rounds are played until fewer than 2t elements are left. The
farthest pair of points in that remaining set is the antipole pair S1, S2 of
elements.

If the distance (pairwise alignment) of our antipole pair lies below a given
threshold, then a single new cluster is generated from all the elements and
the recursion stops. Otherwise, partition the input set of elements according
to their proximity to S1, S2. Each resulting class is then treated as a new
input set and is treated recursively. The process terminates with one cluster
per leaf of the generated antipole tree.

A similar randomized tournament process can be applied to each cluster
to generate its approximate 1-median. Let C be such a cluster. At each round,
the winners of the previous round are randomly partitioned into subsets of a
fixed size t and a local optimization procedure is used to determine the winner
for each subset, which is the 1-median of the subset. Rounds are played until
only one element, the final winner, is left.

The chapter is organized as follows. Section 3.2 is a short survey of
preceding work. Section 3.3 introduces the antipole tree for generic metric
spaces. Section 3.4 presents the AntiClustAl alignment algorithm. Section
3.5 shows experimental results and comparison with ClustalW. Section 3.6
describes a successful biological application whose details can be found
in [320]. Conclusions and future development are given in sections 3.7 and
3.8.

3.2 Related Work

To reduce the complexity of multiple sequence alignment, several approaches
have been proposed. The Carillo Lipmann method [66] provides a heuristic
to accelerate the speed of the alignment process. The exponential time is
lowered by a constant factor, since, if the sequences are very similar, the
optimal solution can be discovered by visiting a small neighborhood of the
main diagonal of the exponential dynamic programming algorithm.

Several approximation algorithms have been proposed, including [55, 277].
Two algorithms are particularly relevant to our approach. The first one [126,
160] uses a progressive alignment strategy that consists of incrementally
aligning every sequence Si ∈ S − {Sc} to the centroid Sc of S. The second,
called ClustalW [177, 178], a widely used tool for solving the multiple sequence
alignment problem for biosequences, starts by building a phylogenetic
(evolutionary) tree [127]. ClustalW consists of three main stages. First of
all, the pairwise distance matrix is computed on all the pairs of sequences.
Next, the algorithm uses the neighbor-joining method [342] to construct a
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phylogenetic tree. Finally, all the sequences are aligned progressively from
the leaves up.

At the leaf level, the process begins by pairwise alignment of two single
strings, and it proceeds by pairwise alignment of two sets of strings that are
the result of previous alignments of children nodes. Each set is represented
by a single vector known as a profile [156].

Let M be a multiple sequence alignment of length l defined over
the alphabet Σ. A profile P is a l × |Σ ∪ {−}| matrix, whose columns
are probability vectors denoting the frequencies of each symbol in the
corresponding alignment column. The profile concept is used in ClustalW
as a mathematical instrument to perform either the alignment of a sequence
S with a multiple sequence alignment M or the alignment of two multiple
alignments M1 and M2. To align a profile P = (pi,j) for i = 1, . . . , l and
j = 1, . . . , |Σ| + 1 against a sequence S = s1s2 . . . sn, one can use the
classical algorithm by Miller and Myers [292] appropriately modified. Let
σ : (Σ ∪ {−}) × (Σ ∪ {−}) �→ R be the scoring function defined by the rule

σ(a, b) =
{

x a = b
y otherwise

where x, y are two different real numbers. Let σ̂ : (Σ∪{−})×{1, 2, . . . , l} �→ R
be a new weighted average scoring function defined as follows:

σ̂(b, i) =
∑
a∈Σ

pi,a · σ(a, b) (3.1)

where pi,a represents the frequency of the base a in the ith column of the
profile P . By replacing the scoring function σ by σ̂, the Miller and Myers
algorithm [292] reduces the alignment-to-sequence comparison problem to a
sequence-to-sequence one.

Profiles are used to align two multiple sequence alignments M1 of length
l and M2 of length m whose profiles are, respectively, P1 = (p′

i,k) and
P2 = (p′′

j,k) with i = 1, . . . , l, j = 1, . . . , m, and k = 1, . . . , |Σ| + 1. Now
the new scoring function σ̃ : {1, . . . , l} × {1, . . . , m} �→ R takes as input two
positions, i in the profile P1 and j in the profile P2, and returns the following
value:

σ̃(i, j) =
|Σ|+1∑
k=1

f(p′
i,k · p′′

j,k) (3.2)

where f(·) is any monotonic function.
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3.3 Antipole Tree Data Structure for Clustering in
Metric Spaces

Let X be a finite set of objects (for example, biosequences) and let d a
distance function dist : X × X �→ R such that the following four properties
hold:

1. dist(x, y) ≥ 0 ∀x, y ∈ X (positiveness)
2. dist(x, y) = dist(y, x) ∀x, y ∈ X (symmetry)
3. dist(x, x) = 0∀x ∈ X (reflexivity)
4. dist(x, y) ≤ dist(x, z) + dist(z, y) ∀x, y, z ∈ X (triangularity)

Clustering X with a bounded diameter σ is the problem of partitioning X into
few nonempty subsets (i.e., the clusters) of diameter less than σ. A centroid
or the 1-median of a cluster Clu is the element C of Clu, which minimizes the
following

∑
y ∈ X d(C, y). The radius of a cluster Clu is the distance between

the centroid C and the farthest object from C in that cluster. Assume we fix a
cluster diameter σ such that sequences whose pairwise distance is greater than
σ are considered to be significantly different by some application-dependent
criterion. The antipole clustering of bounded diameter σ [64] is performed by
a top-down procedure starting from a given finite set of points (biosequences
in our case) S by a splitting procedure (Figure 3.1a) which assigns each point
of the splitting subset to the closest endpoint of a “pseudo-diameter” segment
called antipole.1

An antipole pair of elements is generated as the final winner of a set of
randomized tournaments (Figure 3.2).

The initial tournament is formed by randomly partitioning the set S into
t-uples (subsets of cardinality t), locating the 1-median and then discarding
it (Figure 3.2a). The winning sets (all points except the 1-median) go to the
next stage of the tournament. If any of the tournaments has cardinality that
is not a multiple of t, then one of the games will have at most 2t − 1 players.

If the final winner pair has a distance (pairwise alignment) that is lower
than σ, then splitting is not performed and the subset is one of the clusters
(Figure 3.1b). Otherwise the cluster is split and the algorithm proceeds
recursively on each of the two generated subsets. At the end of the procedure,
the centroid of each cluster [63] is computed by an algorithm similar to the
one to find the antipole pair (Figure 3.2b). In this case the winner of each
game is the object that minimizes the sum from the other t − 1 elements.
This procedure gives rise to a data structure called antipole tree.

1The pseudo-diameter in such a case is a pair of biosequences, the endpoints,
different enough.
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BUILD TREE(S, σ)

1 Q ← APPROX ANTIPOLE(S,σ);
2 if Q = ∅ then // splitting condition fails
3 T.Leaf ← TRUE;
4 T.C ← MAKE CLUSTER(S);
5 return T ;
6 end if;
7 {A, B} = Q ; // A, B are the antipoles sequences
8 T.A ← A;
9 T.B ← B;

10 SA ← {O ∈ S|dist(O, A) < dist(O, B)};
11 SB ← {O ∈ S|dist(O, B) ≤ dist(O, A)};
12 T.left ← BUILD TREE(SA,σ);
13 T.right ← BUILD TREE(SB ,σ);
14 return T ;
15 end BUILD TREE.

(a)

MAKE CLUSTER(S)

1 C .Centroid ← APPROX 1 MEDIAN(S);
2 C .Radius ← maxx ∈ S dist(x, C .Centroid)
3 C .CList ← S \ {C .Centroid};
4 return C ;
5 end MAKE CLUSTER.

(b)

Fig. 3.1. (a) Antipole algorithm. (b) MakeCluster algorithm.

3.4 AntiClustAl: Multiple Sequence Alignment via
Antipoles

In this section we show that replacing the phylogenetic tree with the antipole
tree gives a substantial speed improvement to the ClustalW approach with
as good or better quality. (The quality of our approach derives from the fact
that multiple alignment of a set of sequences works better when the diameter
of the set of sequences is small.) Our basic algorithm is

1. Build the antipole tree as described in section 3.3.
2. Align the sequences progressively from the leaves up, inspired by

ClustalW.

Starting at the leaves, the second step aligns all the sequences of the
corresponding cluster using the profile alignment technique. Figures 3.3,
3.4, and 3.5 contain the pseudocode of the multiple sequence alignment via
antipole. The recursive function AntiClustal visits the antipole tree from the
leaves up (following ClustalW’s strategy of visiting the phylogenetic tree from
the leaves up). It aligns all the sequences stored in the leaves (the clusters) by
calling the function AlignCluster. Next, two aligned clusters are merged by the
function MergeAlignment. The three mentioned procedures make use of the
functions AlignSequences, AlignProfileVsSequence, and OptimalAlignment,
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The approximate antipole selection algorithm

LOCAL WINNER(T )

1 return T \ 1-MEDIAN(T );
2 end LOCAL WINNER

FIND ANTIPOLE(T )

1 return P1, P2 ∈ T such that
dist(P1, P2) ≥ dist(x, y) ∀x, y ∈ T ;

2 end FIND ANTIPOLE

APPROX ANTIPOLE(S)

1 while |S| > threshold do
2 W ← ∅;
3 while S ≥ 2 ∗ t do
4 Randomly choose a set T ⊆ S : |T | = t;
5 S ← S \ T ;
6 W ← W ∪ {LOCAL WINNER(T )};
7 end while
8 S ← W ∪ {LOCAL WINNER(S)};

// (for the remaining elements of S)
9 end while

10 return FIND ANTIPOLE(S);
11 end APPROX ANTIPOLE

1-MEDIAN (X)

1 for each x ∈ X do
2 σx ←

∑
y∈X d(x, y);

3 Let m ∈ X be an element such that
σm = minx∈X(σx);

4 return m
5 end 1-MEDIAN

APPROX 1 MEDIAN (S)

1 while|S| > Threshold do
2 W ← ∅;
3 while |S| ≥ 2t do
4 Randomly choose a set T ⊆ S : |T | = t;
5 S ← S \ T ;
6 W ← W ∪ {1-MEDIAN (T )};
7 end while;
8 S ← W ∪ {1-MEDIAN (S)};

// (for the remaining elements of S)
9 end while;

10 return 1-MEDIAN (S);
11 end APPROX 1 MEDIAN

Fig. 3.2. Pseudocode of the approximate algorithms: (a) Approximate antipole
search. (b) 1-median computation. The variable threshold is usually taken to be
(t2 + 1). Indeed, this is the lowest value for which it is possible to partition the set
S into subsets of size between t and 2t−1. In the AntiClustAl implementation, the
subset size t is taken equal to three. This guarantees good performance. However it
can be experimentally shown that the optimal choice of t is equal to the dimension
of the underlying metric space plus one.
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which, respectively, align two profiles, a profile versus a sequence and two
sequences according to the Miller and Myers algorithm [292]. Finally the
function GetProfile returns the profile of a multiple sequence alignment.
Figure 3.6 shows an example of the proposed method.

AntiClustal(Tree T )

1 if (!isLeaf(T )) /* if T is not a leaf */
2 AntiClustal(T.left);
3 AntiClustal(T.right);
4 T ← MergeAlignment(T.left, T.right);
5 T.leaf ← TRUE;
6 return(T );
7 else
8 AlignCluster(T );
9 return (T );

10 end if;
11 end AntiClustal

Fig. 3.3. Multiple sequence alignment via the antipole tree.

MergeAlignment(Tree A, Tree B)

1 P1 ← GetProfile(A);
2 P2 ← GetProfile(B);
3 C ← AlignSequences(A, P1, B, P2);
4 return C.
5 end MergeAlignment

Fig. 3.4. How to align two clusters.

AlignCluster(Tree A)

1 if (|A.cluster| = 1)
2 return A;
3 else
4 C ← OptimalAlignment(A0, A1);
5 if (|A| ≥ 3)
6 for each Ai ∈ A.cluster do
7 P ← GetProfile(C);
8 C ← AlignProfileVsSequence(Ai, P, C);
9 end for

10 end if
11 return C;
12 end if;
13 end AlignCluster

Fig. 3.5. How to align the sequences in a cluster.
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Fig. 3.6. Example of multiple sequence alignment via antipole tree using alpha-
globin sequences. A portion of the aligned sequences is shown at the bottom. The
symbols under the aligned sequences show the matches in concordance with the
given definition.

3.5 Comparing ClustalW and AntiClustAl

In this section we experimentally compare ClustalW1.82 with AntiClustAl.
The comparison is made in terms of both running time and precision.
The experiments were performed on alpha globins, beta globins, and
immunoglobulins downloaded from GenBank. Each dataset had from 10 to
200 biosequences. Each biosequence had from 120 to 100000 bases. Precision
was measured by the relative match number, which is obtained by dividing
the match number by the alignment length:

Match Ratio = 100 · match number
alignment length

A biologically more significant comparison parameter is the column blocks
match, obtained by associating an integer with each column of a multiple
alignment. Call that integer column match and set its value to between 0 and
3 according to the following scheme.

• 3 if the ith column contains a perfect match, that is, every element in the
ith column is the same nongap symbol

• 2 if the ith column contains a weak match, that is, 75% of its elements are
the same nongap symbol
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• 1 if the ith column contains a trivial match, that is, more than 50% of its
elements are the same nongap symbol and the remaining elements are all
gap symbols

• 0 otherwise. In this case we have a mismatch.

Figure 3.7 shows that the running time of the antipole clustering alignment
is better than ClustalW because the antipole algorithm performs a linear
rather than quadratic number of distance computations. The reason is that
constructing an antipole tree takes only linear time. Thus the advantage
increases as the number of sequences increases. As for the quality of the
alignment, Figures 3.8, 3.9, and 3.10 show that antipole clustering alignment
usually gives a higher quality result than ClustalW in terms of both match
ratio and column blocks match.
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Fig. 3.7. Running time comparison between ClustalW1.82 and AntiClustAl.

AntiClustAl can also align proteins. Unlike nucleotide alignment, protein
alignment uses scoring functions to reflect the functional differences among
amino acids. Our implementation uses a metric version of the scoring matrix
PAM [269]. We compared our method with ClustalW using the benchmark
BaliBase2.0 [400]. Figure 3.11 shows the results.
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Fig. 3.8. Match comparison between ClustalW1.82 and AntiClustAl.

3.6 Case Study: In Vitro and In Silico Cloning of
Xenopus laevis SOD2 and Its Phylogenetic Analysis
with AntiClustAl

By using biological and informatic techniques (i.e., RT-PCR, cycle
sequencing, and data analysis) and the data obtained through the Genome
Projects, we have cloned Xenopus laevis SOD2 (MnSOD) cDNA and
determined its nucleotide sequence. These data and the deduced primary
structure of the protein were then compared with all the other SOD2
nucleotide and amino acid sequences from eukaryotes and prokaryotes
published in public databases. The analysis was performed by using both
ClustalW and AntiClustAl. Our results demonstrate a very high conservation
of the enzyme amino acid sequence during evolution, suggesting a tight
structure-function relationship. This is to be expected for very ancient
molecules endowed with critical biological functions, where the functions
derive from a specific structural organization.

Conservation is weaker at the nucleotide sequence level, which makes
sense, given the frequency of neutral mutations. The data obtained by using
AntiClustAl are of equivalent quality with those produced with ClustalW,
validating this algorithm as an important new tool for biocomputational
analysis. Finally, it is noteworthy that evolutionary trees, drawn by using all
the available data on SOD2 amino acid and nucleotide sequences and either
ClustalW or AntiClustAl, are comparable to those obtained through classical
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Fig. 3.9. Alignment comparison between ClustalW1.82 and AntiClustAl for alpha
globins.

phylogenetic analysis (Figures 3.12B, 3.13). Biologically, it is noteworthy that
Chlamydomonas (a chlorophyton) is an out-of-order species in both trees
(Figure 3.13).

3.7 Conclusions

AntiClustAl is a new method to align a set of biosequences rapidly.
AntiClustAl begins with a randomized hierarchical clustering algorithm
that yields a tree whose leaf nodes consist of sequences. AntiClustAl then
aligns such sequences by a post order traversal of the tree. A successful
biological application concerning the enzyme Xenopus laevis SOD2 shows
the applicability of the method. The method has a better running time than
ClustalW with comparable alignment quality. The software is available on
line at the following address: http://alpha.dmi.unict.it/˜ctnyu/.
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Fig. 3.10. Alignment comparison between ClustalW1.82 and AntiClustAl for
immunoglobulins.
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Fig. 3.11. Protein alignment comparisons with ClustalW using the benchmark
BaliBase2.0.
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Fig. 3.12. (A) Evolution rate of SOD2 protein and its overlap with that
of cytochrome C. (B) Comparison of SOD2 cDNA nucleotide sequence of
Homo sapiens, Gallus gallus, Drosophila melanogaster, Caenorhabditis elegans,
Arabidopsis thaliana, Aspergillus nidulans, Escherichia coli, and Halobacterium
salinarum.

3.8 Future Developments and Research Problems

We believe that the randomized tournaments technique can be applied to
several problems in bioinformatics. By using alternative clustering algorithms
and local alignment techniques, similar to those of T-Coffee [302], we are
currently studying several modifications of AntiClustAl with the aim of
improving its precision. In order to afford very large multiple sequence
alignments, we plan to implement a parallel version of AntiClustAl. This
should be facilitated by the nice recursive top-down structure of the antipole
tree clustering procedure. We plan to use these AntiClustAl extensions to
analyze the evolution of the transcription apparatus as well as that of the
apoptotic machinery.
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Fig. 3.13. Phylogenetic trees based on SOD2 sequence evolution, drawn by using
either ClustalW (A) or AntiClustAl (B).



Chapter 4
RNA Structure Comparison and Alignment

Kaizhong Zhang

Summary
We present an RNA representation scheme in which an RNA structure
is described as a sequence of units, each of which stands for either an
unpaired base or a base pair in the RNA molecule. With this structural
representation scheme, we give efficient algorithms for computing
the distance and alignment between two RNA secondary structures
based on edit operations and on the assumptions in which either
no bond-breaking operation is allowed or bond-breaking activities
are considered. The techniques provide a foundation for developing
solutions to the hard problems concerning RNA tertiary structure
comparisons. Some experimental results based on real-world RNA data
are also reported.

4.1 Introduction

Ribonucleic acid (RNA) is an important molecule, which performs a wide
range of functions in biological systems. In particular, it is RNA (not DNA)
that contains the genetic information of viruses such as HIV and thereby
regulates the functions of these viruses. RNA has recently become the center
of much attention because of its catalytic properties [68], leading to an
increased interest in obtaining RNA structural information.

RNA molecules have two sets of structural information. First, the
primary structure of an RNA molecule is a single strand made of the
ribonucleotides A (adenine), C (cytosine), G (guanine) and U (uracil).
Second, the ribonucleotide sequences fold over onto themselves to form
double-stranded regions of base pairings, yielding higher order tertiary
structures.
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It is well known that the structural features of RNAs are important
in the molecular mechanisms involving their functions. The presumption,
of course, is that, corresponding to a preserved function, there exists a
preserved molecular confirmation and therefore a preserved structure. The
RNA secondary structure is a restricted subset of the tertiary structure, which
plays an important role between primary structures and tertiary structures,
since the problem of comparing and aligning the tertiary structures of RNA
molecules is often intractable. Based on a reliable secondary structure
alignment, the possible tertiary structure element alignments that are
consistent with the secondary structure alignment can then be introduced.

A coarsely grained RNA secondary structure representation that uses
the structural elements of hairpin loops, bulge loops, internal loops, and
multibranched loops is proposed in [362, 363]. It has been shown that
with this representation, a tree edit distance algorithm can be used to
compare RNA secondary structures [363]. Similar ideas have also been used
in [244, 245]. Those early works on RNA structure comparison used loops and
stacked base pairs as basic units, making it difficult to define the semantic
meaning in the process of converting one RNA structure into another. In
another line of work, RNA comparison is basically done on the primary
structures while trying to incorporate secondary structural information into
the comparison [24, 86]. More recent work also uses the notion of arc-
annotated sequences [115, 204].

In [447], edit distance, a similarity measure between two RNA secondary
structures based on edit operations on base pairs and unpaired bases is
proposed. This model has been extended from secondary structures to
tertiary structures in [259, 448]. In this model, a base pair in one structure
can be aligned only with a base pair in the other structure. Based on this
model, algorithms have been developed for global and local alignment with
affine gap penalty [72, 423]. In general, this is a reasonable model since
in RNA structures when one base of a base pair changes, we usually find
that its partner also changes so as to conserve the pairing relationship.
However, occasionally a base pair in one structure should be aligned with
unpaired bases in the other structure since a mutation of one base may forbid
the pairing. In [205, 254] a refined model, which allows base-pair breaking
(deleting the bond of the base pair) and base-pair altering (deleting one base
and therefore the bond of the base pair), is proposed. In this chapter, we
discuss these methods for comparing and aligning RNA structures.

4.2 RNA Structure Comparison and Alignment Models

In this section, we consider RNA structure comparison and alignment models.
We first consider the RNA structure comparison model based on edit
operations proposed in [259, 448] and the alignment model with gap initiation
cost based on edit operations proposed in [423]. We then extend the edit
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operations with an additional operation: base-pair bond breaking. The RNA
structure comparison [205, 254] and alignment models based on the extended
edit operations are then considered.

An RNA structure is represented by R(P ), where R is a sequence of
nucleotides with r[i] representing the ith nucleotide, and P ⊂ {1, 2, · · · , |R|}2

is a set of pairs of which each element (i, j), i < j, represents a base pair
(r[i], r[j]) in R. We use R[i, j] to represent the subsequence of nucleotides
from r[i] to r[j]. We assume that base pairs in R(P ) do not share participating
bases. Formally, for any (i1, j1) and (i2, j2) in P , j1 	= i2, i1 	= j2, and i1 = i2
if and only if j1 = j2.

Let s = r[k] be an unpaired base and p = (r[i], r[j]) be a base pair in
R(P ). We define the relation between s and p as follows. We say s is before
p if k < i. We say s is inside p if i < k < j. We say s is after p if j < k.

Let s = (r[i], r[j]) and t = (r[k], r[l]) be two base pairs in R(P ). We define
the relation between s and t as follows. We say s is before t if j < k. We say
s is inside t if k < i and j < l. We say s and t are crossing if i < k < j < l
or k < i < l < j.

For an RNA structure R(P ), if any two of its base pairs are noncrossing,
then we say R(P ) is a secondary structure. Otherwise, we say R(P ) is a
tertiary structure.

For an RNA structure R(P ), we define pr( ) as follows.

pr(i) =
{

i if r[i] is an unpaired base
j if (r[i], r[j]) or (r[j], r[i]) is a base pair in P

By this definition pr(i) 	= i if and only if r[i] is a base in a base pair of
R(P ) and pr(i) = i if and only if r[i] is an unpaired base of R(P ). If pr(i) 	= i,
then pr(i) is the base paired with base i. When there is no confusion, we use
R instead of R(P ) to represent an RNA structure assuming that there is an
associated function pr( ).

4.2.1 RNA Structure Comparison and Alignment Based on Edit
Operations

Following the tradition in sequence comparison [296, 373], we define three
edit operations, substitute, delete, and insert, on RNA structures. For a given
RNA structure R, each operation can be applied to either a base pair or an
unpaired base. To substitute a base pair is to replace one base pair with
another. This means that at the sequence level, two bases may be changed
at the same time. To delete a base pair is to delete the two bases of the base
pair. At the sequence level, this means to delete two bases at the same time.
To insert a base pair is to insert a new base pair. At the sequence level, this
means to insert two bases at the same time. To relabel an unpaired base is to
replace it with another unpaired base. To delete an unpaired base is to delete
the base from the sequence. To insert an unpaired base is to insert a new
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base into the sequence as an unpaired base. Note that there is no substitute
operation that can change a base pair to an unpaired base or vice versa.
Figure 4.1 shows edit operations on RNA structures.
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Fig. 4.1. RNA structure edit operations. Base-pair substitution is shown at the
left and base-pair deletion is shown at the right.

In this model, a base pair can be matched only with a base pair. In
general, this is a reasonable model since in RNA structures when one base of
a base pair changes, its partner usually also changes to conserve that pairing
relationship.

We represent an edit operation as a → b, where a and b are λ, the null
label, labels of base pairs from {A, C, G, U}×{A, C, G, U}, or unpaired bases
from {A, C, G, U}. We call a → b a substitute operation if a 	= λ and b 	= λ,
a delete operation if b = λ, and an insert operation if a = λ. Let Γ be
a cost function that assigns to each edit operation a → b a nonnegative
real number Γ (a → b). We constrain Γ to be a distance metric. That is,
(1) Γ (a → b) ≥ 0, Γ (a → a) = 0, (2) Γ (a → b) = Γ (b → a), and (3)
Γ (a → c) ≤ Γ (a → b) + Γ (b → c). We extend Γ to a sequence of edit
operations S = s1, s2, . . . sn by letting Γ (S) =

∑n
i=1 Γ (si).

The edit distance between two RNA structures R1 and R2 is defined by
considering the minimum-cost edit operation sequence that transforms R1 to
R2. Formally, the edit distance between R1 and R2 is defined as

D(R1, R2) = min
S

{Γ (S) | S is an edit operation sequence taking R1 to R2}.

In the computation of the edit distance, the goal is to find the minimum-
cost edit sequence that can change one structure to the other. A similarity
(maximization) version can also be considered, where the goal is to find
the maximum-scoring edit sequence that can change one structure to the
other. We will refer to the edit distance, D(R1, R2), as the RNA structure
comparison model based on edit operations.

RNA structure distance/similarity can also be represented by an
alignment of two RNA structures. In the alignment representation, the gap
initiation cost can be considered. Formally, given two RNA structures R1 and
R2, a structural alignment of R1 and R2 is represented by (R′

1, R
′
2) satisfying

the following conditions.



RNA Structure Comparison and Alignment 63

(1) R′
1 is R1 with some new ′−′’s inserted and R′

2 is R2 with some new ′−′’s
inserted such that |R′

1| = |R′
2|.

(2) If r′
1[i] is an unpaired base in R′

1, then either r′
2[i] is an unpaired base in

R′
2 or r′

2[i] = ′−′. If r′
2[i] is an unpaired base in R′

2, then either r′
1[i] is

an unpaired base in R′
1 or r′

1[i] = ′−′.
(3) If (r′

1[i], r
′
1[j]) is a base pair in R′

1, then either (r′
2[i], r

′
2[j]) is a base pair

in R′
2 or r′

2[i] = r′
2[j] = ′−′. If (r′

2[i], r
′
2[j]) is a base pair in R′

2, then
either (r′

1[i], r
′
1[j]) is a base pair in R′

1 or r′
1[i] = r′

1[j] = ′−′.

From this definition, it is clear that an alignment preserves the order of
unpaired bases and the topological relationship between base pairs. Since the
alignment specifies how base pairs are aligned and preserves the relationship
between the base pairs, it is in fact a structural alignment. Figure 4.2 gives
a simple illustration of this alignment.

A A A G A A U A A U U U A C G G G A C C C U A U A A A

C G A G A U A A C A U U A C G G G A U A A A

base pair match base pair deletion

base insertion base matchgap

base pair substitution

base substitution

Fig. 4.2. RNA structure alignment with edit operations.

A gap in an alignment (R′
1, R

′
2) is a consecutive subsequence of ′−′’s in

either R′
1 or R′

2 with maximal length. More formally, [i · · · j] is a gap in
(R′

1, R
′
2) if either r′

1[k] = ′−′ for i ≤ k ≤ j, r′
1[i − 1] 	= ′−′, r′

1[j + 1] 	= ′−′,
or r′

2[k] = ′−′ for i ≤ k ≤ j, r′
2[i − 1] 	= ′−′, r′

2[j + 1] 	= ′−′. For each gap
in an alignment, in addition to the insertion/deletion costs, we will assign a
constant, gap cost, as the gap initiation cost. This means that longer gaps
are preferred since for a longer gap the additional cost distributed to each
base is relatively small. This kind of affine gap penalty has long been used in
sequence alignment [152]. In biological alignment, whenever possible, longer
gaps are preferred since it is difficult to delete the first element, but after
that, continuing to delete subsequent elements is much easier.

Given an alignment (R′
1, R

′
2), we define an unpaired base match set SM ,

an unpaired base deletion set SD, an unpaired base insertion set SI, a base-
pair match set PM , a base-pair deletion set PD, and a base-pair insertion
set PI as follows.
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SM = { i | r′
1[i] and r′

2[i] are unpaired bases in R1 and R2}.
SD = { i | r′

1[i] is an unpaired base in R1 and r′
2[i] = ′−′}.

SI = { i | r′
2[i] is an unpaired base in R2 and r′

1[i] = ′−′}.
PM = { (i, j) | (r′

1[i], r
′
1[j]) and (r′

2[i], r
′
2[j]) are base pairs in R1 and R2}.

PD = { (i, j) | (r′
1[i], r

′
1[j]) is a base pair in R1 and r′

2[i] = r′
2[j] = ′−′}.

P I = { (i, j) | (r′
2[i], r

′
2[j]) is a base pair in R2 and r′

1[i] = r′
1[j] = ′−′}.

The cost of an alignment (R′
1, R

′
2) is defined as follows, where #gap is the

number of gaps in (R′
1, R

′
2).

cost((R′
1, R

′
2)) = gap cost × #gap

+
∑

i∈SM Γ (r′
1[i] → r′

2[i]) +
∑

i∈SD Γ (r′
1[i] → λ) +

∑
i∈SI Γ (λ → r′

2[i])
+

∑
(i,j)∈PM Γ ((r′

1[i], r
′
1[j]) → (r′

2[i], r
′
2[j])) +

∑
(i,j)∈PD Γ ((r′

1[i], r
′
1[j]) → λ)

+
∑

(i,j)∈PI Γ (λ → (r′
2[i], r

′
2[j]))

Given two RNA structures R1 and R2, the edit alignment between them
is defined as

A(R1, R2) = min
(R′

1,R′
2)

{cost((R′
1, R

′
2))}.

We will refer to the edit alignment, A(R1, R2), as the RNA structure
alignment model based on edit operations. When gap cost = 0, it is easy to
see that D(R1, R2) = A(R1, R2) [259, 448].

4.2.2 RNA Structure Comparison and Alignment Based on
Extended Edit Operations

Although the alignment based on edit operations is of good quality, sometimes
one may have to consider alignments where a base pair of one RNA structure
is aligned with two unpaired bases in the other RNA structure. Suppose that
the base pair involved in the former RNA structure is (A, U) and the two
unpaired bases in the latter RNA structure are U and U . Then with the
edit operations, this alignment would be interpreted as deleting the base pair
followed by inserting the two unpaired bases. A more realistic interpretation is
that base A in the base pair (A, U) mutates into U , and this mutation causes
the bond between the two bases to break. Therefore in this subsection, we
will consider the situation where the bond between the two bases of a base
pair is allowed to break.

In addition to the edit operations of insertion, deletion, and substitution,
we now consider one more operation: base-pair bond breaking. This operation
can be applied to a base pair, causing the bond between the two bases
of the pair to break and the base pair to become two unpaired bases.
Figure 4.3 illustrates the base-pair bond-breaking operation. We will refer
to edit operations with the base-pair bond-breaking operation as extended
edit operations.
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Fig. 4.3. Base-pair bond-breaking operation.

For this model, we will not consider an explicit base-pair altering
operation [205, 254] since that operation is replaced by a base-pair bond-
breaking operation and then an unpaired base deletion operation. With the
base-pair bond-breaking operation, we do not have to explicitly define a
base-pair deletion operation. Instead, we can use a base-pair bond-breaking
operation followed by two unpaired base deletion operations to replace a
base-pair deletion operation. The reason follows.

Let the cost of a base-pair bond-breaking operation, a base-pair deletion
operation, an unpaired base deletion operation, and an unpaired base
substitution operation be Wb, Wp, Wd, and Ws, respectively. By triangle
inequality, we have Wp ≤ Wb + 2Wd. On the other hand, by inspecting the
two alignments in Figure 4.4, it is clear that the alignment on the left is better
than the alignment on the right. Therefore we have Wb + 2Ws ≤ Wp + 2Wd,
which means that Wb +2(Ws −Wd) ≤ Wp. Since Ws can be as large as 2Wd,
by triangle inequality, it is reasonable to choose Wb + 2Wd ≤ Wp. These two
inequalities show that the cost of a base-pair deletion should be the same as
the cost of one base-pair bond breaking plus the cost of two unpaired base
deletions. Figure 4.5 shows some examples of extended edit operations.

A U

G G

. . .

. . .

. . .

. . .

. . .

. . .

A U. . .

. . . . . .G

. . . . . .

− G. . . −

−−

Fig. 4.4. Two alignments.

Alternatively, suppose a base-pair deletion operation is defined and its
cost Wp is smaller than Wb + 2Wd. Then, since Wp = Wb + 2((Wp − Wb)/2),
we can consider that, after a base-pair bond-breaking operation, deleting a
base from a base pair will have a cost of (Wp − Wb)/2.

Similar to the edit distance of two RNA structures R1 and R2, the
extended edit distance between R1 and R2 is defined as

Db(R1, R2) =
min

S
{Γ (S) | S is an extended edit operation sequence taking R1 to R2}.
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Fig. 4.5. RNA structure alignment with extended edit operations.

We refer to the extended edit distance, Db(R1, R2), as the RNA structure
comparison model based on extended edit operations. Based on the extended
edit operations, RNA structure alignment can also be considered. Figure 4.5
gives a simple illustration of this alignment. Given two RNA structures R1
and R2, a structural alignment of R1 and R2 is represented by (R′

1, R
′
2)

satisfying the following condition.

• R′
1 is R1 with some new ′−′’s inserted and R′

2 is R2 with some new ′−′’s
inserted such that |R′

1| = |R′
2|.

The cost of the alignment (R′
1, R

′
2) can be determined in two steps.

In the first step, we consider the base pairs in R1 and R2. Suppose that
(r1[i1], r1[i2]) is a base pair in R1 and (r2[j1], r2[j2]) is a base pair in R2 and
in the alignment (R′

1, R
′
2) r1[i1] is aligned with r2[j1] and r1[i2] is aligned

with r2[j2]. Then this is either a base-pair match or a base-pair substitution
with cost Γ ((r1[i1], r1[i2]) → (r2[j1], r2[j2])). For all the other base pairs, the
bonds are broken with a cost of Γb for each of those base pairs. In the second
step, after base-pair substitution and base-pair bond breaking, we consider
all the bases that are not involved in either base-pair matches or base-pair
substitutions. If r1[i] is aligned with r2[j], then we have a base match or a
base substitution with a cost of Γ (r1[i] → r2[j]). If a base is aligned with a
space, then we have a base deletion (or insertion) with a cost of Γ (r1[i] → ′−′)
(or Γ (′−′ → r2[j])). Note that the bases we consider in the second step may
not necessarily be unpaired bases. They might be bases in the base pairs that
have undergone base-pair bond breakings.

Given two RNA structures R1 and R2, the extended edit alignment
between them is defined as

Ab(R1, R2) = min
(R′

1,R′
2)

{cost((R′
1, R

′
2))}.

We refer to the extended edit alignment, Ab(R1, R2), as the RNA
structure alignment model based on extended edit operations. When
gap cost = 0, it is easy to see that Db(R1, R2) = Ab(R1, R2).
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4.3 Hardness Results

In this section, we consider the problem of alignment between RNA structures
where both structures are tertiary structures. In general, this problem is Max
SNP-hard.

When the gap cost is zero, there are two results from [259].

1. The problem of computing the edit distance between two RNA tertiary
structures is Max SNP-hard.

This means that there is no polynomial time approximation scheme
(PTAS) for this problem unless P = NP [311].

A maximization (similarity) version can also be considered, where the
goal is to find a maximal-scoring edit sequence that can change one structure
to the other. For the maximization version, the result is stronger than that
for the minimization version.

2. For any δ < 1, the maximization version of the problem cannot be
approximated within ratio 2logδ n in polynomial time unless NP ∈
DTIME[2poly log n].

When the gap cost is greater than zero, there is a result from [423].

3. The problem of computing the edit alignment based on the edit operations
with an arbitrary nontrivial affine score scheme is Max SNP-hard.

These results can be extended to the model with base-pair bond breakings.
Therefore the problems of computing the extended edit distance and extended
edit alignment between two RNA tertiary structures are Max SNP-hard.

Note that these results are for the theoretical case where the tertiary
structures can be arbitrarily complex. In reality, however, the number of
tertiary-structure base pairs is relatively small compared with the number of
secondary-structure base pairs. Therefore successful heuristic methods have
been developed for the alignment between RNA tertiary structures [80].

4.4 Algorithms for RNA Secondary Structure
Comparison

In this section, we consider the problem of computing the edit distance
and extended edit distance between two RNA secondary structures. Since
an RNA secondary structure appears as a treelike structure (Figure 4.6),
there are algorithms for RNA structure comparison using tree comparison
[244, 363, 392, 447, 449]. This is indeed true for computing the edit distance
and extended edit distance of two RNA secondary structures if suitable tree
(sometimes forest) representations are used.
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Fig. 4.6. RNA secondary structure.

4.4.1 Edit Distance

Recall that a secondary structure is represented by a set S of noncrossing base
pairs that form bonds. For (i, j) ∈ S, h is accessible from (i, j) if i < h < j
and there is no pair (k, l) ∈ S such that i < k < h < l < j. Define (i, j) as the
parent of (k, l) ∈ S if k, l are accessible from (i, j). Define (i, j) as the parent
of h 	∈ S if h is accessible from (i, j). Note that each base pair (i, j) ∈ S and
each unpaired base h has at most one parent, implying a tree (sometimes
forest) on the elements of a secondary structure. The definitions of “child,”
“sibling,” and “leaf” follow naturally. The order imposed based on the 5′ to
3′ nature of an RNA molecule makes the tree an ordered tree (Figure 4.7). In
this representation, internal nodes represent base pairs and leaves represent
unpaired bases.

Following [392, 449], let us consider tree edit operations. Relabeling a
node means changing the label of the node. Deleting a node n means making
the children of n become the children of the parent of n and then removing n.
Inserting is the complement of deleting. Examining each of the edit operations
defined on RNA secondary structures, we can see that they are exactly the
same as the tree edit operations defined on the tree representation.

Conversely, the edit operations defined on this tree representation are
meaningful operations on RNA secondary structures. Theoretically there
could be operations that do not result in a valid secondary structure (e.g.
inserting an unpaired base as an internal node), but we can show that
the minimum-cost sequence of tree edit operations that transforms one tree
into another will not use this kind of operations. Therefore we can use tree
edit algorithms on this tree representation to compare two RNA secondary
structures.
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Fig. 4.7. Tree representation of the RNA structure in Figure 4.6.

The ordered tree edit distance algorithm [449] has a time complexity of
O(|T1||T2| min(depth(T1),leaves(T1)) min(depth(T2), leaves(T2))) and space
complexity of O(|T1||T2|) where |Ti| is the size of the tree Ti. The depth is
really the collapsed depth, where nodes with degree one are ignored when
counting the depth.

Using the tree representation for RNA secondary structures, the size of
the tree, denoted by RT , is the total number of unpaired bases plus the
total number of base pairs, which is actually smaller than the length of
the corresponding primary structure. The collapsed depth here, denoted by
dp, is really the maximum number of loops on a path from the root to a
leaf. Here the loops are bulge loops, internal loops, multibranched loops,
and hairpin loops. Taking the loops into account, the resulting algorithm for
computing the edit distance between two RNA secondary structures has a
time complexity of O(RT

1 RT
2 dp1dp2).

4.4.2 Extended Edit Distance

Since there is no tree edit operation corresponding to base-pair bond
breakings, we cannot directly use tree edit distance algorithms here. However
with an extended tree representation and a small modification of the tree edit
distance algorithms, an algorithm for computing the extended edit distance
between RNA secondary structures can easily be developed. This extended
tree representation is shown in Figure 4.8. In this representation, each internal
node represents the bond between the two bases of a base pair, the leftmost
and the rightmost leaves of an internal node represent the two bases of a base
pair, and all the other leaves represent unpaired bases.
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Fig. 4.8. Extended tree representation of the RNA structure in Figure 4.6.

With this extended tree representation, unpaired base substitution,
insertion, and deletion correspond to tree leaf substitution, insertion, and
deletion and a base-pair bond breaking corresponds to an internal node
insertion or deletion. The only problem is concerned with the base-pair
substitution operation since a base pair now is represented by three nodes:
an internal node and its leftmost and rightmost leaves. This means that if
we want to use the tree edit distance algorithms, some modifications are
necessary.

In fact, we need only a very small modification. When applying the tree
edit distance algorithms to this extended tree representation, whenever we
match an internal node of one tree T to an internal node in the other tree T ′,
we have to make sure that, simultaneously, the leftmost leaf of the internal
node in tree T is matched with the leftmost leaf of the internal node in tree
T ′ and the rightmost leaf of the internal node in tree T is matched with the
rightmost leaf of the internal node in tree T ′.

Using the extended tree representation, the size of the tree is larger than
the length of the corresponding primary structure. The collapsed depth here
is the same as the depth of the tree. Therefore the real running time of
this modified algorithm using the extended tree representation in Figure
4.8 would be slower than the running time of the algorithm using the tree
representation in Figure 4.7. Since the tree size is actually larger than the
length of the corresponding primary structure, in the actual implementation
one may avoid using the explicit tree representation [205, 423].
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4.5 Algorithms for RNA Structure Alignment

In this section, we consider the problem of computing the edit alignment
and extended edit alignment between two RNA structures R1 and R2. Since
computing the structure alignment for RNA tertiary structures is Max SNP-
hard, we cannot expect to find the optimal solution in polynomial time.
However we will present algorithms that will find the optimal solution when
at least one of the RNA structures is a secondary structure and good solutions
when both RNA structures are tertiary structures. Therefore, we do not
assume that the input RNA structures are secondary structures and will
not use any tree representation.

4.5.1 Edit Alignment

Since aligning crossing base pairs is difficult, we add one more condition in
defining a structural alignment (R′

1, R
′
2) of R1 and R2.

(4) If (r′
1[i], r

′
1[j]) and (r′

1[k], r′
1[l]) are base pairs in R′

1 and (r′
2[i], r

′
2[j]) and

(r′
2[k], r′

2[l]) are base pairs in R′
2, then (r′

1[i], r
′
1[j]) and (r′

1[k], r′
1[l]) are

noncrossing in R′
1 and (r′

2[i], r
′
2[j]) and (r′

2[k], r′
2[l]) are noncrossing in

R′
2.

Therefore, even though the input RNA structures may have crossing base
pairs, the aligned base pairs in them are noncrossing. We present an algorithm
that computes the optimal alignment of two RNA structures based on this
new alignment definition. We will show that our algorithm can be used for
aligning tertiary structures in practical applications, though the alignment
may not be the optimal one according to the original definition.

In extending techniques of Gotoh [152] to handle gap initiation costs from
sequence alignment to structure alignment, the main difficulty is that, with
the deletion of a base pair, two gaps might be created simultaneously. We
deal with this problem by considering the deletion of a base pair as two
separate deletions of its two bases, each with a cost of half of the base-pair
deletion cost. We will use a bottom up dynamic programming algorithm to
find the optimal alignment between R1 and R2. That is, we consider the
smaller substructures in R1 and R2 first and eventually consider the whole
structures of R1 and R2.

Property of optimal alignments. Consider two RNA structures R1 and
R2. Let γg = gap cost. We use Γ ( ) to define γ(i, j) for 0 ≤ i ≤ |R1| and
0 ≤ j ≤ |R2|.
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γ(i, 0) = Γ (r1[i] → λ) if i = pr1(i)
γ(0, i) = Γ (λ → r2[i]) if i = pr2(i)
γ(i, j) = Γ (r1[i] → r2[j]) if i = pr1(i) and j = pr2(j)
γ(i, 0) = γ(j, 0) = Γ ((r1[i], r1[j]) → λ)/2 if i = pr1(j) < j
γ(0, i) = γ(0, j) = Γ (λ → (r2[i], r2[j]))/2 if i = pr2(j) < j
γ(i, j) = Γ ((r1[i1], r1[i]) → (r2[j1], r2[j])) if i1 = pr1(i) < i

and j1 = pr2(j) < j

From this definition, if r1[i] is a single base, then γ(i, 0) is the cost of deleting
this base, and if r1[i] is a base of a base pair, then γ(i, 0) is half of the cost of
deleting the base pair. Therefore we distribute evenly the deletion cost of a
base pair to its two bases. The meaning of γ(0, i) is similar. When i > 0 and
j > 0, γ(i, j) is the cost of aligning base pairs (r1[i1], r1[i]) and (r2[j1], r2[j]).

We now consider the optimal alignment between R1[i1, i2] and R2[j1, j2].
We use A(i1, i2 ; j1, j2) to represent the optimal alignment cost between
R1[i1, i2] and R2[j1, j2]. We use D(i1, i2 ; j1, j2) to represent the optimal
alignment cost such that r1[i2] is aligned to ′−′. If i1 ≤ pr1(i2) < i2, then
by the definition of alignment, in the optimal alignment of D(i1, i2 ; j1, j2),
r1[pr1(i2)] has to be aligned to ′−′. We use I(i1, i2 ; j1, j2) to represent the
optimal alignment cost such that r2[j2] is aligned to ′−′. If j1 ≤ pr2(j2) < j2,
then in the optimal alignment of I(i1, i2 ; j1, j2), r2[pr2(j2)] has to be aligned
to ′−′.

In computing A(i1, i2 ; j1, j2), D(i1, i2 ; j1, j2) and I(i1, i2 ; j1, j2) for
any i1 ≤ i ≤ i2, if pr1(i) < i1 or i2 < pr1(i), then r1[i] will be forced to be
aligned to ′−′; for any j1 ≤ j ≤ j2, if pr2(j) < j1 or j2 < pr2(j), then r2[j]
will be forced to be aligned to ′−′. It will be clear from Lemmas 4.5.3, 4.5.4,
and 4.5.5 that this proposition is used to deal with two situations: aligning
one base pair among crossing base pairs and deleting a base pair.

We can now consider how to compute the optimal alignment between
R1[i1, i2] and R2[j1, j2]. The first two lemmas are trivial, so we omit their
proofs.

Lemma 4.5.1.
A(∅ ; ∅) = 0
D(∅ ; ∅) = γg

I(∅ ; ∅) = γg

Lemma 4.5.2. For i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2,

D(i1, i ; ∅) = D(i1, i − 1 ; ∅) I(∅ ; j1, j) = I(∅ ; j1, j − 1)
+ γ(i, 0) + γ(0, j)

A(i1, i ; ∅) = D(i1, i ; ∅) A(∅ ; j1, j) = I(∅ ; j1, j)
I(i1, i ; ∅) = D(i1, i ; ∅) + γg D(∅ ; j1, j) = I(∅ ; j1, j) + γg
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Lemma 4.5.3. For i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2,

D(i1, i ; j1, j) = min
{

D(i1, i − 1 ; j1, j) + γ(i, 0)
A(i1, i − 1 ; j1, j) + γ(i, 0) + γg

Proof. If D(i1, i ; j1, j) is from D(i1, i − 1 ; j1, j), then aligning r1[i] with
′−′ does not open a gap. Therefore there is no gap penalty. If D(i1, i ; j1, j)
is from either A(i1, i − 1 ; j1, j) or an alignment where r1[i − 1] is aligned to
r2[j], then aligning r1[i] to ′−′ opens a gap. Therefore there is a gap penalty.

Notice that if i1 ≤ pr1(i) < i, then aligning r1[i] to ′−′ means aligning
r1[pr1(i)] to ′−′. Therefore with the deletion of a base pair, two gaps
may be opened. However aligning r1[pr1(i)] to ′−′ is indeed true in both
D(i1, i − 1 ; j1, j) and A(i1, i − 1 ; j1, j). The reason for this is that for base
pair (r1[pr1(i)], r1[i]), one base, r1[pr1(i)], is inside the interval [i1, i− 1], and
one base, r1[i], is outside the interval [i1, i − 1]. This means that r1[pr1(i)] is
forced to be aligned to ′−′. �

Lemma 4.5.4. For i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2,

I(i1, i ; j1, j) = min
{

I(i1, i ; j1, j − 1) + γ(0, j)
A(i1, i ; j1, j − 1) + γ(0, j) + γg

Proof. Similar to Lemma 4.5.3. �

Lemma 4.5.5. For i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2,

if i = pr1(i) and j = pr2(j), then

A(i1, i ; j1, j) = min

⎧⎨
⎩

D(i1, i ; j1, j)
I(i1, i ; j1, j)
A(i1, i − 1 ; j1, j − 1) + γ(i, j)

if i1 ≤ pr1(i) < i and j1 ≤ pr2(j) < j, then

A(i1, i ; j1, j) = min

⎧⎪⎪⎨
⎪⎪⎩

D(i1, i ; j1, j)
I(i1, i ; j1, j)
A(i1, pr1(i) − 1 ; j1, pr2(j) − 1)+
+A(pr1(i) + 1, i − 1 ; pr2(j) + 1, j − 1) + γ(i, j)

otherwise,

A(i1, i ; j1, j) = min
{

D(i1, i ; j1, j)
I(i1, i ; j1, j)

Proof. Consider the optimal alignment between R1[i1, i] and R2[j1, j]. There
are three cases: (1) i = pr1(i) and j = pr2(j), (2) i1 ≤ pr1(i) < i and
j1 ≤ pr2(j) < j, and (3) all the other cases.

For case 1, since i = pr1(i) and j = pr2(j), both r1[i] and r2[j] are
unpaired bases. In the optimal alignment, r1[i] may be aligned to ′−′, r2[j]
may be aligned to ′−′, or r1[i] may be aligned to r2[j]. Therefore we take the
minimum of the three cases.
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For case 2, since i1 ≤ pr1(i) < i and j1 ≤ pr2(j) < j,
both (r1[pr1(i)], r1[i]) and (r2[pr2(j)], r2[j]) are base pairs. In the optimal
alignment, (r1[pr1(i)], r1[i]) may be aligned to (′−′, ′−′), (r2[pr2(j)], r2[j])
may be aligned to (′−′, ′−′), or (r1[pr1(i)], r1[i]) may be aligned to
(r2[pr2(j)], r2[j]).

If (r1[pr1(i)], r1[i]) is aligned to (′−′, ′−′), then A(i1, i ; j1, j) =
D(i1, i ; j1, j). If (r2[pr2(j)], r2[j]) is aligned to (′−′, ′−′) then A(i1, i ; j1, j) =
I(i1, i ; j1, j).

If (r1[pr1(i)], r1[i]) is aligned to (r2[pr2(j)], r2[j]), then the optimal
alignment between R1[i1, i] and R2[j1, j] is divided into three parts: (1) the
optimal alignment between R1[i1, pr1(i) − 1] and R2[j1, pr2(j) − 1], (2) the
optimal alignment between R1[pr1(i) + 1, i − 1] and R2[pr2(j) + 1, j − 1], and
(3) the alignment of (r1[pr1(i)], r1[i]) to (r2[pr2(j)], r2[j]). This is true since
any base pair across (r1[pr1(i)], r1[i]) or (r2[pr2(j)], r2[j]) should be aligned
to ′−′ and the cost of such an alignment has already been included in part 1
and part 2. Hence we have A(i1, i ; j1, j) = A(i1, pr1(i) − 1 ; j1, pr2(j) − 1)+
A(pr1(i) + 1, i − 1 ; pr2(j) + 1, j − 1)+ γ(i, j).

In case 3, we consider all the other possibilities in which we cannot align
r1[i] to r2[j]. We examine several subcases involving base pairs.

- Subcase 1: pr1(i) > i. This means that r1[pr1(i)] is outside the interval
[i1, i] and we have to align r1[i] to ′−′.

- Subcase 2: pr2(j) > j. This is similar to subcase 1. Together with subcase
1, this implies that when pr1(i) > i and pr2(j) > j, even if r1[i]=r2[j], we
cannot align them to each other.

- Subcase 3: pr1(i) < i1. This is similar to subcase 1. Together with subcase
1, we know that if a base pair is across an aligned base pair, then it has to
be aligned to ′−′.

- Subcase 4: pr2(j) < j1. This is similar to subcase 3. �

Basic algorithm. From Lemmas 4.5.1 to 4.5.5, we can compute A(R1, R2)
= A(1, |R1| ; 1, |R2|) using a bottom-up approach. Moreover, it is clear that
we do not need to compute all A(i1, i2 ; j1, j2). From Lemma 4.5.5, we need
to compute only the A(i1, i2 ; j1, j2) such that (r1[i1 −1], r1[i2 +1]) is a base
pair in R1 and (r2[j1 − 1], r2[j2 + 1]) is a base pair in R2.

Given R1 and R2, we can first compute sorted base-pair lists L1 for R1
and L2 for R2. This sorted order is in fact a bottom-up order since, for two
base pairs s and t in R1, if s is before or inside t, then s is before t in the sorted
list L1. For each pair of base pairs L1[i] = (i1, i2) and L2[j] = (j1, j2), we use
Lemma 4.5.1 to Lemma 4.5.5 to compute A(i1 +1, i2 − 1 ; j1 +1, j2 − 1). We
use the procedure in Figure 4.9 to compute A(R1[i1, i2], R2[j1, j2]). Figure
4.10 shows the algorithm.

Let R1 and R2 be the two given RNA structures and P1 and P2 be
the number of base pairs in R1 and R2, respectively. The time to compute
A(i1, i2 ; j1, j2) is O((i2−i1)(j2−j1)), which is bounded by O(|R1|×|R2|). The
time complexity of the algorithm in the worst case is O(P1P2|R1||R2|). We can
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To compute A(R1[i1, i2], R2[j1, j2])

compute A(0, 0), D(0, 0), and I(0, 0) as in Lemma 4.5.1;

for i := i1 to i2
compute A(i, 0), D(i, 0), and I(i, 0) as in Lemma 4.5.2;

for j := j1 to j2
compute A(0, j), D(0, j), and I(0, j) as in Lemma 4.5.2;

for i := i1 to i2
for j := j1 to j2

compute A(i, j), D(i, j), and I(i, j) as in Lemma 4.5.3,
Lemma 4.5.4, and Lemma 4.5.5.

Fig. 4.9. Procedure for computing A(R1[i1, i2], R2[j1, j2]).

Input: R1[1..m] and R2[1..n]

compute a sorted (by 3′ end) base pair list L1 for R1;
compute a sorted (by 3′ end) base pair list L2 for R2;

for i := 1 to |L1|
for j := 1 to |L2|

let L1[i] = (r1[i1], r1[i2]);
let L1[j] = (r2[j1], r2[j2]);
compute A(R1[i1 + 1, i2 − 1], R2[j1 + 1, j2 − 1]);

compute A(R1[1, m], R2[2, n]);

trace back to find the optimal alignment between R1 and R2.

Fig. 4.10. Algorithm for computing A(R1, R2).

improve our algorithm so that the worst case running time is O(S1S2|R1||R2|)
where S1 and S2 are the number of stems, i.e., stacked pairs of maximal
length, in R1 and R2, respectively. The space complexity of the algorithm is
O(|R1||R2|).

Notice that when one of the input RNA structures is a secondary
structure, this algorithm computes the optimal solution of the problem. Also,
since the number of tertiary interactions is relatively small compared with
the number of secondary interactions, we can use this algorithm to compute
the alignment between two RNA tertiary structures. Essentially the algorithm
tries to find the best sets of noncrossing base pairs to align and delete tertiary
interactions. Although this is not an optimal solution, in practice it would
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produce a reasonable result by aligning most of the base pairs in the two
RNA tertiary structures.

4.5.2 Extended Edit Alignment

From the algorithm for computing the edit alignment of two RNA structures,
it is easy to develop an algorithm for computing the extended edit alignment
between the RNA structures. To begin with, we make the following
modifications. A base in a base pair can be deleted, inserted, or aligned
with another base. In these situations, the bond between the two bases in the
base pair is broken, and therefore there is a base-pair bond-breaking cost.
The simplest way is to evenly distribute this cost to the two bases of the base
pair.

Let Γg be the cost of a base-pair bond-breaking operation. Suppose that
r1[i] is a base in R1 and r2[j] is a base in R2. Then the cost of deleting r1[i]
is Γ (r1[i] → λ) if r1[i] is an unpaired base in R1 and Γ (r1[i] → λ) + Γg/2 if
r1[i] is a base in a base pair in R1; the cost of inserting r2[j] is Γ (λ → r2[j])
if r2[j] is an unpaired base in R2 and Γ (λ → r2[j]) + Γg/2 if r2[j] is a base
in a base pair in R2; the cost of aligning r1[i] to r2[j] is Γ (r1[i] → r2[j]) if
both r1[i] and r2[j] are unpaired bases, Γ (r1[i] → r2[j])+Γg/2 if exactly one
of r1[i] and r2[j] is an unpaired base, Γ (r1[i] → r2[j]) + Γg if both r1[i] and
r2[j] are a base in a base pair.

After performing these changes, Lemmas 4.5.1 to 4.5.4 remain the same
as before and Lemma 4.5.5 needs to be changed so that r1[i] can be aligned
with r2[j] regardless of whether or not they are unpaired bases.

4.6 Some Experimental Results

In our experiments, we compute alignments between RNA tertiary structures.
Figures 4.11 and 4.12 show the 2D drawings of two RNA structures where
secondary bondings are represented by a dash or a dot between two bases and
tertiary bondings are represented by a solid line between distant bases. Figure
4.13 shows another representation of these two RNA structures where nested
parentheses, ( and ), represent secondary base pairs and square brackets, [
and ], represent tertiary base pairs.

These RNA structures are taken from the RNase P database [54].
Ribonuclease P is the ribonucleoprotein endonuclease that cleaves transfer
RNA precursors, removing 5′ precursor sequences and generating the mature
5′ terminus of the tRNA. Alcaligenes eutrophus is from the beta purple
bacteria group and Anacystis nidulans is from the Cyanobacterial group.
Notice that both RNA structures are tertiary structures.

We deal with these tertiary structures in the following way. Given two
RNA tertiary structures, we first apply the alignment algorithm to produce
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Fig. 4.11. Alcaligenes eutrophus from the RNase P database. This image is taken
from http://www.mbio.ncsu.edu/RNaseP/.

an alignment where aligned base pairs are noncrossing, and then, using a
constrained alignment algorithm, we align tertiary base pairs if they are not
in conflict with the base pairs already aligned. The reason for this two-step
procedure is that in real RNA data, the number of tertiary base pairs is
relatively small compared with the number of secondary base pairs. Therefore
the first step will handle the majority secondary base pairs and the second
step will handle the minority tertiary base pairs.

Figures 4.14 to 4.17 show four alignment results where the cost of
an unpaired base deletion or insertion is 1, the cost of an unpaired base
substitution is 1, the cost of a base-pair deletion or insertion is 2, and the
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Fig. 4.12. Anacystis nidulans from the RNase P database. This image is taken
from http://www.mbio.ncsu.edu/RNaseP/.

cost of a base-pair substitution is 1. The first and the second alignments are
an edit alignment and an extended edit alignment where gap cost is zero.
The third and the fourth alignments are an edit alignment and an extended
edit alignment where gap cost is nonzero. Since gap cost is zero for the first
and the second alignments, the alignments in fact correspond to computing
the edit distance and extended edit distance of those RNA structures.

It is clear that the extended edit distance in Figure 4.15 [205, 254] and
the edit alignment in Figure 4.16 [72, 423] are better than the edit distance in
Figure 4.14 [259, 448]. The extended edit alignment in Figure 4.17 is better
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Alcaligenes eutrophus:

(((((((((((((((((( (( (((((((( )))))))) )) [[[ [[[[[(((( [[[[ ((((( ((((
1 AAAGCAGGCCAGGCAACCGCUGCCUGCACCGCAAGGUGCAGGGGGAGGAAAGUCCGGACUCCACAGGGCAGGGUGUUGGC

)))) ((((( )))) )(( (( (((( (((((((( )))))))) ))))
81 UAACAGCCAUCCACGGCAACGUGCGGAAUAGGGCCACAGAGACGAGUCUUGCCGCCGGGUUCGCCCGGCGGGAAGGGUGA

))))))))))))) (((( (((((( ((((( ]]]]))))))))))) ))))
161 AACGCGGUAACCUCCACCUGGAGCAAUCCCAAAUAGGCAGGCGAUGAAGCGGCCCGCUGAGUCUGCGGGUAGGGAGCUGG

(((((((( )))))))) ))))))) (( ((((((((( ))))))))) )) ]]]]
241 AGCCGGCUGGUAACAGCCGGCCUAGAGGAAUGGUUGUCACGCACCGUUUGCCGCAAGGCGGGCGGGGCGCACAGAAUCCG

]]]] ) ))))))))))
321 GCUUAUCGGCCUGCUUUGCUU

Anacystis nidulans:

(((((((( ((( ((((( ((( (((((((((( ))) ))))))) [[[ [[[[[((((( [[[[[[[ (((
1 GCGGGGAAAGGAGGCGAGGCAGUUGCGGCUCAGGCUUCGGUUAUGGGCUGAGGAAAGUCCGGGCUCCCAAAAGACCAGAC

((((((( )))))((((( )))) )(( (( ((((( ((((((( ))))) ))
81 UUGCUGGGUAACGCCCAGUGCGGGUGACCGUGAGGAGAGUGCCACAGAAACAUACCGCCGAUGGCCUGCUUGCAGGCACA

))) )) (((((( )))))) ((((((( ))))))) )))))))))))))) (
161 GGUAAGGGUGCAAGGGUGCGGUAAGAGCGCACCAGCAACAUCGAGAGGUGUUGGCUCGGUAAACCCCGGUUGGGAGCAAG

(( ((((( ((( ]]]]]]] )))))))) ))) (((((((( ))))))))
241 GUGGAGGGACAACGGUUGGUCUUUUACCUGUUCCGUUUAUGGACCGCUAGAGGUGGCUAGUAAUAGCCAUCCCAGAGAGA

))) )))((((((( ))))))) ]]]]]]]] ) )))) ))))))))
321 UAACAGCCCUCUGUCUUCGACAGAGAACAGAACCCGGCUUAUGUCCUGCUUUCCCUACUUUAUUU

Fig. 4.13. Two RNA structures from the RNase P database.

than the extended edit distance in Figure 4.15 and the edit alignment in
Figure 4.16.

From the implementation point of view, the programs for computing
the edit distance and the edit alignment are much faster than those for
computing the extended edit distance and the extended edit alignment. The
improvements from the edit distance case to the extended edit distance case or
from the edit alignment case to the extended edit alignment case are relatively
small. Consequently, in applications where only a distance value rather than
an actual alignment is needed, perhaps faster programs for computing the
edit distance and edit alignment could be used.
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Alcaligenes-eutrophus-pb-b
Anacystis-nidulans-cb: gap = 0, score = 197.000000

--((((((-(--((-(((((-(((( (( (((((((( - )))-))))) )) [[[ [[[[[((((- --- [[
(((((((( ((( ((((( -((( ((-(((((((( -))) )))))-)) [[[ [[[[[((((( [[[--[[

--AAAGCA-G--GC-CAGGC-AACCGCUGCCUGCACCG-CAAGGU-GCAGGGGGAGGAAAGUCCGGACUCC-A---CAGG
GCGGGGAAAGGAGGCGAGGCA-GUUGCG-GCUCAGGCUUCG-GUUAUGGGC-UGAGGAAAGUCCGGGCUCCCAAAA--GA

[[ (((-((- (((( ))))- ((((( )))) )(( (( - (((( (--(((((((-
[[ ((( (((-(((( )))))-((((( )))) )(( (( -((((-( (((((((
GCAGGG-UG-UUGGCUAACAGCCA-UCCACGGCAACGUGCGGAAUAGGGCCACAGAGACG-AGUCUUGC--CGCCGGG-U
CCAGACUUGC-UGGGUAACGCCCAG-UGCGGGUGACCGUGAGGAGAGUGCCACAGAAACAUA-CCGC-CGAUGGCCUGCU

)))))-))) ))--)) - --------- ----------------------------- -- ))))))
- ))))) )))-)) )) (((((( )))))) ((((((( ))))))) ))))))

UCGCCCGG-CGGGAA--GGGUG-AA---------ACG-----------------------------C--GGUAACCUCCA
U-GCAGGCACAG-GUAAGGGUGCAAGGGUGCGGUAAGAGCGCACCAGCAACAUCGAGAGGUGUUGGCUCGGUAAACCCCG

)))-)))) (((( (((((( ((((( ]]]]----))))))))))) - ---)))) ((((((
)))))))) -((( -- (((((-- --((( ]]]]]]] )))---))))) )))- ((((((
CCU-GGAGCAAUCCCAAAUAGGCAGGCGAUGAAGCGGCCC----GCUGAGUCUGCGGGU-A---GGGAGCUGGAGCCGGC
GUUGGGAGCAA-GGUGGA--GGGACA--AC--GGUUGGUCUUUUACC---UGUUCCGUUUAUGGACC-GCUAGAGGUGGC

(( )))))))) - )))-)))) (( ((((((((( - ))))))))) )) ]]]]]]]]
(( )))))))) - ))) -)))---(-(((---((( --)))---)))-)- - ]]]]]]]]
UGGUAACAGCCGGCCUAGAG-GAAUGGU-UGUCACGCACCGUUUGCCG-CAAGGCGGGCGGGGCGCACAGAAUCCGGCUU
UAGUAAUAGCCAUCCCAGAGAGA-UAACA-GCC---C-UCU---GUCUUC--GAC---AGA-G-A-ACAGAACCCGGCUU

) )))--)-)))))) -----
) )))) ))))))))

AUCGGC--C-UGCUUUGCUU-----
AUGUCCUGCUUUCCCUACUUUAUUU

Fig. 4.14. Edit distance.

Alcaligenes-eutrophus-pb-b
Anacystis-nidulans-cb: gap = 0, break = 1, score = 188.000000

------(((((((((((((((((( (( (((((((( - )))-))))) )) [[[ [[[[[((((- [[[[-
(((((((( ((( ((((( ((( ((-(((((((( -))) )))))-)) [[[ [[[[[((((( [[[[[[[

------AAAGCAGGCCAGGCAACCGCUGCCUGCACCG-CAAGGU-GCAGGGGGAGGAAAGUCCGGACUCC-ACAGGGC-A
GCGGGGAAAGGAGGCGAGGCAGUUGCG-GCUCAGGCUUCG-GUUAUGGGC-UGAGGAAAGUCCGGGCUCCCAAAAGACCA

(((-(( (((( )))) ((((( )))) )(( (( - ((((- -(((((((( )))
((( ((((((( )))))((((( )))) )(( (( -((((( ((((((( - -))
GGG-UGUUGGCUAACAGCCAUCCACGGCAACGUGCGGAAUAGGGCCACAGAGACG-AGUCUU-G-CCGCCGGGUUCGCCC
GACUUGCUGGGUAACGCCCAGUGCGGGUGACCGUGAGGAGAGUGCCACAGAAACAUA-CCGCCGAUGGCCUGCUU-G-CA

)))-)) ))--)) - --------- ---- ------ ------------------- -- )))))))))-))
))) ))))) )) (((((( )))))) ((((((( ))))))) ))))))))))))
GGC-GGGAA--GGGUG-AA---------A----C------G-------------------C--GGUAACCUCCACCU-GG
GGCACAGGUAAGGGUGCAAGGGUGCGGUAAGAGCGCACCAGCAACAUCGAGAGGUGUUGGCUCGGUAAACCCCGGUUGGG

)) (((( (((((( (((((- ]]]]---))))))))))) - -)-))) (((((((( )
)) (((- -- (((((-- --((( ]]]]]]] )))---))))) ))) (((((((( )
AGCAAUCCCAAAUAGGCAGGCGAUGAAGC-GGCCC---GCUGAGUCUGCGGGU-A-G-GGAGCUGGAGCCGGCUGGUAAC
AGCAAGGU-GGA--GGGACA--AC--GGUUGGUCUUUUACC---UGUUCCGUUUAUGGACCGCUAGAGGUGGCUAGUAAU

))))))) - ))))))) (( ((((((((( - ))))))))) )) ]]]]]]]] ) )))))
))))))) - ))) )))---(-(((---((( --)))---)))-)- - ]]]]]]]] ) )-)))
AGCCGGCCUAGAG-GAAUGGUUGUCACGCACCGUUUGCCG-CAAGGCGGGCGGGGCGCACAGAAUCCGGCUUAUCGGCCU
AGCCAUCCCAGAGAGA-UAACAGCC---C-UCU---GUCUUC--GAC---AGA-G-A-ACAGAACCCGGCUUAUGU-CCU

)))))---- -----
))))))))

GCUUU----GCUU-----
GCUUUCCCUACUUUAUUU

Fig. 4.15. Extended edit distance.
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Alcaligenes-eutrophus-pb-b
Anacystis-nidulans-cb: gap = 3, score = 311.000000

--((((((((---(-((((((-((( (( (((((((( )))-))))) )) [[[ [[[[[((((----- [[
(((((((( ((( ((-((( ((( ((-(((((((( ))) )))))-)) [[[ [[[[[((((( [[[---[[

--AAAGCAGG---C-CAGGCA-ACCGCUGCCUGCACCGCAAGGU-GCAGGGGGAGGAAAGUCCGGACUCC-----ACAGG
GCGGGGAAAGGAGGCGA-GGCAGUUGCG-GCUCAGGCUUCGGUUAUGGGC-UGAGGAAAGUCCGGGCUCCCAAAA---GA

[[ (((-((- (((( ))))- ((((( )))) )(( (( (((( (--(((((((
[[ ((( (((-(((( )))))-((((( )))) )(( (( ((((-( (((((((
GCAGGG-UG-UUGGCUAACAGCCA-UCCACGGCAACGUGCGGAAUAGGGCCACAGAGACGAGUCUUGC--CGCCGGGUUC
CCAGACUUGC-UGGGUAACGCCCAG-UGCGGGUGACCGUGAGGAGAGUGCCACAGAAACAUACCGC-CGAUGGCCUGCUU

)))))-))) ))--)) ----------------------------------------- ))))))))
))))) )))-)) )) (((((( )))))) ((((((( ))))))) ))))))))

GCCCGG-CGGGAA--GGGUGAAA-----------------------------------------CGCGGUAACCUCCACC
GCAGGCACAG-GUAAGGGUGCAAGGGUGCGGUAAGAGCGCACCAGCAACAUCGAGAGGUGUUGGCUCGGUAAACCCCGGU

)-)))) (((( (((((( ((((( ]]]]----))))))))))) ----)))) ((((((((
)))))) (((--- (((((-- --((( ]]]]]]] )))---))))) -))) ((((((((
U-GGAGCAAUCCCAAAUAGGCAGGCGAUGAAGCGGCCC----GCUGAGUCUGCGGGUA----GGGAGCUGGAGCCGGCUG
UGGGAGCAAGGU---GGAGGGACA--AC--GGUUGGUCUUUUACC---UGUUCCGUUUAUGG-ACCGCUAGAGGUGGCUA

)))))))) )))-)))) (( ((((((((( ))))))))) )) ]]]]]]]] ) )
)))))))) ))) )))--------((((((( -)))))))------ ]]]]]]]] ) )

GUAACAGCCGGCCUAGAGGAAUGGU-UGUCACGCACCGUUUGCCGCAAGGCGGGCGGGGCGCACAGAAUCCGGCUUAUCG
GUAAUAGCCAUCCCAGAGAGAUAACAGCC--------CUCUGUCUUC-GACAGAG------AACAGAACCCGGCUUAUGU

)---)))))))) -----
))) ))))))))
G---CCUGCUUUGCUU-----
CCUGCUUUCCCUACUUUAUUU

Fig. 4.16. Edit alignment.

Alcaligenes-eutrophus-pb-b
Anacystis-nidulans-cb: gap = 3, break = 1, score = 254.500000

------(((((((((((((((((( (( (((((((( )))))))) )) [[[ [[[[[((((-- [[[[ ((
(((((((( ((( ((((( ((( (((((((-((( ))) ))))))) [[[ [[[[[((((( [[[[[[[ ((

------AAAGCAGGCCAGGCAACCGCUGCCUGCACCGCAAGGUGCAGGGGGAGGAAAGUCCGGACUCC--ACAGGGCAGG
GCGGGGAAAGGAGGCGAGGCAGUUGCGGCUCA-GGCUUCGGUUAUGGGCUGAGGAAAGUCCGGGCUCCCAAAAGACCAGA

(-(( (((( )))) ((((( )))) )(( (( ((((-- (((((((( ))))))
( ((((((( )))))((((( )))) )(( (( ((((( ((-((((( )))))
G-UGUUGGCUAACAGCCAUCCACGGCAACGUGCGGAAUAGGGCCACAGAGACGAGUCUU--GCCGCCGGGUUCGCCCGGC
CUUGCUGGGUAACGCCCAGUGCGGGUGACCGUGAGGAGAGUGCCACAGAAACAUACCGCCGAUG-GCCUGCUUGCAGGCA

)) ))--)) ----------------------------------------- )))))))))-))))
))))) )) (((((( )))))) ((((((( ))))))) ))))))))))))))
GGGAA--GGGUGAAA-----------------------------------------CGCGGUAACCUCCACCU-GGAGCA
CAGGUAAGGGUGCAAGGGUGCGGUAAGAGCGCACCAGCAACAUCGAGAGGUGUUGGCUCGGUAAACCCCGGUUGGGAGCA

(((( (((((( ((--((( ]]]]----))))))))))) )))) (((((((( ))))))
((( ------(((---(( ((( ]]]]]]] )))))))) ))) (((((((( ))))))

AUCCCAAAUAGGCAGGCGAUGA--AGCGGCCC----GCUGAGUCUGCGGGUAGGGAGCUGGAGCCGGCUGGUAACAGCCG
AGGUGGAG------GGA---CAACGGUUGGUCUUUUACCUGUUCCGUUUAUGGACCGCUAGAGGUGGCUAGUAAUAGCCA

)) ))))))) (( ((((((((( ))))))))) )) ]]]]]]]] ) ))))))))))
)) ))) )))------((((((( ---)))))))----- ]]]]]]]] ) )-))) ))))))
GCCUAGAGGAAUGGUUGUCACGCACCGUUUGCCGCAAGGCGGGCGGGGCGCACAGAAUCCGGCUUAUCGGCCUGCUUUGC
UCCCAGAGAGAUAACAGCC------CUCUGUCUUC---GACAGAG-----AACAGAACCCGGCUUAUGU-CCUGCUUUCC

---------
))
---------UU
CUACUUUAUUU

Fig. 4.17. Extended edit alignment.
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Chapter 5
Piecewise Constant Modeling of Sequential
Data Using Reversible Jump Markov Chain
Monte Carlo

Marko Salmenkivi and Heikki Mannila

Summary
We describe the use of reversible jump Markov chain Monte Carlo
(RJMCMC) methods for finding piecewise constant descriptions of
sequential data. The method provides posterior distributions on the
number of segments in the data and thus gives a much broader view on
the potential data than do methods (such as dynamic programming)
that aim only at finding a single optimal solution. On the other hand,
MCMC methods can be more difficult to implement than discrete
optimization techniques, and monitoring convergence of the simulations
is not trivial. We illustrate the methods by modeling the GC content
and distribution of occurrences of ORFs and SNPs along the human
genomes. We show how the simple models can be extended by modeling
the influence of GC content on the intensity of ORF occurrence.

5.1 Introduction

Sequential data occur frequently in biological applications. At least three
different types of sequential data can be distinguished: strings, sequences of
events, and time series. A string is simply a sequence of symbols from some
alphabet Σ (typically Σ is assumed to be finite). In genomic applications,
the alphabet is typically the four-letter DNA alphabet. A sequence of events
over alphabet Σ is a collection of pairs (e, t), where e ∈ Σ is the event and
t is the occurrence time (or position) of the event. As an example, if we
are interested in the occurrences of certain specific words w1, . . . , wk in the
genome, we can model the occurrences as a sequence of events consisting
of pairs (wi, t), where t is the position in the sequence of wi. A time series
consists also of pairs (e, t), where t is the occurrence, or measurement time,
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but e is a possibly many-dimensional value. For example, we can consider
the frequency of all two-letter words in overlapping windows of some length
in the genome to obtain a time series with dimension 16.

The process that creates the sequential data can often be assumed to
have several hidden states. For example, a genomic sequence could contain
segments stemming from different sources. This leads to the question of
verifying whether there are different segments, and if there are, finding the
change points between the segments.

A natural way of modeling the sources and transitions between them is
to use piecewise constant functions. Change points of a piecewise constant
function can be interpreted as modeling the transitions between hidden
sources. Function values in each piece correspond to the relatively stable
behavior between the transitions.

In the case of time series data, a common choice for modeling is to use
some function α(t), which determines the value of the time series at time t,
except for random error. The error is assumed to be normally distributed
with zero mean, which leads to the loglikelihood being proportional to the
sum of squared distances between the observations and the model predictions.
In piecewise representations of α(t), we obtain the total loglikelihood as the
sum of the loglikelihoods in each piece.

As we use piecewise constant functions, the function α(t) has the following
form:

α(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α1 if Ss ≤ t < c1
α2 if c1 ≤ t < c2
...

...
αi if ci−1 ≤ t ≤ Se

0 elsewhere

Here {Ss, Se} ∈ R are the start and end points of the sequence, the values
{α1, ..., αi} ∈ R+ are the function values in i pieces, and
{c1, ..., ci−1} ∈ [Ss, Se] are the change points of the function.

Figure 5.1 shows an example of a piecewise constant description α(t) of a
time series. Measurements are indicated by the values at positions t1, . . . t7,
and they are illustrated by the filled bars.

Dynamic programming methods can be used to find the best-fitting
piecewise constant function in time O(n2k), for n observations and k segments
[36, 268]. The problem with the dynamic programming methods is that, as
maximum likelihood methods, they always provide a segmentation with a
given number of segments, whether the data support one or not. This can lead
to spurious or downright misleading results, unless care is taken to control
carefully for the significance of the output.

In this chapter we give an introduction to Bayesian modeling of
sequential data and the reversible jump Markov chain Monte Carlo
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Fig. 5.1. A piecewise constant description α(t) of a time series, with the
observations illustrated by the filled bars. The observation range is [Ss, Se]. The
loglikelihood of the time series given α(t) may, for example, be proportional to
Σj(α(tj) − y(tj))2, where y(tj) is the observation at tj .

(RJMCMC) simulation methods for finding posterior distributions of the
model parameters. We use piecewise constant functions in the models, but
the number of pieces is not fixed. Consequently, the methods produce the
posterior distribution of the number of segments as a marginal distribution.
The posterior description of the data, whether time series or event sequence,
is a continuous function, though originally represented by piecewise constant
functions.

The running time of the algorithm is O(n + I), where n is the number of
measurements/occurrences and I is the size of the sample generated from the
posterior distribution. That is, each sample can be generated in constant time
with respect to the amount of data, given linear preprocessing. Typically, I
is quite large.

We illustrate the method by modeling the GC content and distribution
of occurrences of ORFs and SNPs along the human genomes. The methods
can, however, be applied to any time series or set of discrete events along the
genome, e.g., recombinations, transcription factors, and so on.

The rest of the chapter is organized as follows. At the end of this section
we take a look at related work. Section 5.2 provides basics of the Bayesian
modeling approach and gives an introduction to the reversible jump Markov
chain Monte Carlo simulation methods. Examples of applying the methods
are given in section 5.3. Section 5.4 is a short conclusion.
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The Bayesian approach to segmentation has been used before; see, e.g.,
[47]. A general Bayesian approach to finding change points of the distribution
of letters along a sequence with multinomial likelihood is described in [256].
Dynamic programming approaches are utilized to speed up the Bayesian
analysis. A further application of Bayesian techniques for DNA segmentation
is given in [328]. Computationally, we apply the MCMC approach to estimate
the posterior probabilities on the whole space of segmentations. The use of
RJMCMC methods is especially useful for studying segmentations containing
different numbers of segments.

5.2 Bayesian Approach and MCMC Methods

In this section we briefly describe the Bayesian modeling approach and apply
it to finding piecewise constant models for sequential data. For more detailed
descriptions, see, e.g., [40, 140].

Bayesian data analysis sets up a model that determines a joint distribution
for all the quantities of the problem, that is, model parameters θ and data
Y . Bayes rule is obtained by conditioning the joint distribution on the known
data:

P (θ|Y ) =
P (θ)P (Y |θ)

P (Y )
.

The conditional distribution P (θ|Y ) is the posterior distribution of the
model parameters, and P (Y |θ) is the likelihood of data given the parameters.
Assuming that the data are known, the computational part of Bayesian data
analysis is to update the prior distribution P (θ) to the posterior distribution
according to Bayes rule. The probability of the data P (Y ) is independent of
θ. Thus, the posterior distribution is proportional to the product of the prior
distribution and the likelihood.

Integration of the posterior distribution analytically or even by numerical
methods is seldom possible. Monte Carlo integration could be used for
approximate integration if only random samples could be drawn from the
distribution. Markov chain Monte Carlo (MCMC) methods enable sampling
from complex distributions. A sequence of samples generated by MCMC
methods is a realization of a Markov chain that has the desired distribution
f as the stationary distribution.

A simple condition can be utilized to guarantee that the values of a
sequence of samples follow f . Denote by T (θ, θ′) the probability of choosing
θ′ to be the next sample, given that the last chosen is θ. The reversibility
condition holds if for all pairs of values θ and θ′ we have

f(θ)T (θ, θ′) = f(θ′)T (θ′, θ). (5.1)
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The reversibility condition and the technical conditions of aperiodicity
and irreducibility are sufficient to guarantee that the Markov chain has f as
the stationary distribution, that is, the distribution of states converges to f
[163, 402].

The Metropolis-Hastings algorithm solves the problem of finding a
suitable function T as follows [172, 273]. A distribution q(θ, θ′) is used to draw
a candidate for the next sample. The candidate is accepted with probability

α(θ, θ′) = min(1,
f(θ′) q(θ′, θ)
f(θ) q(θ, θ′)

).

In the case of Bayesian posterior distribution, as we only need to know
f(θ′)/f(θ) to apply the Metropolis-Hastings algorithm, the probabilities
P (Y ) of Bayes rule cancel. Hence, as long as P (θ)P (Y |θ) can be calculated,
the MCMC methods can be used to integrate the posterior approximately.

Theoretically, a Markov chain with a stationary distribution converges to
the distribution from any initial state. However, there are usually remarkable
differences between initial states in how long the chain has to be run before
reaching the stationary distribution. When using the Metropolis-Hastings
algorithm, a burn-in period must be run without storing the parameter values.
Finding the sufficient length of the burn-in is not always easy. There are many
heuristic methods for solving the problem in practical situations (see, e.g.,
[52, 53]).

5.2.1 Finding Piecewise Constant Functions with RJMCMC
Methods

We are interested in piecewise constant models with the number of pieces as a
model parameter. That is, we want to consider models with different numbers
of parameters. In a Bayesian framework this can be done by specifying a
hierarchical model, which assigns a prior distribution to the number of pieces.
Figure 5.2 displays a graphical representation of two models: a piecewise
constant model with a fixed number of pieces and its extension to variable
dimensions, with the number of pieces m as a hyperparameter of the model.

To exploit the MCMC methods in the extended model, we should
be able to move from a state to another state with a different number
of dimensions. In the following we present the reversible jump MCMC
(RJMCMC) algorithm, which is a generalization of the Metropolis-Hastings
algorithm to state spaces of variable dimensions. The form of the presentation
is easily applicable for our purposes, modeling sequential data by utilizing
piecewise constant presentations. For more general conditions and a detailed
theoretical description of variable-dimension MCMC, see [155]. The main
sources of the presentation are [419] and [155].

To use RJMCMC simulation, we need to specify proposal distributions
that update the existing parameter vector. The updates are divided into
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Fig. 5.2. Graphical representation of (left) a model with a fixed number of pieces,
here m = 4, and (right) a model with the number of pieces not fixed. S is sequential
data.

two groups: those that maintain the dimension and those that do not. The
proposal distributions that maintain the dimension can change the function
value in one segment and modify the start or end point of a segment. The
operations that modify the dimension can create a new segment by splitting
an existing one or merge two adjacent segments into one.

Let us divide the parameter vector into two components θ = (m, z), where
m ∈ {1, 2, . . . , K} determines the dimension of the model nm ≥ 1 and z is the
vector of the other parameters of the model, possibly of varying length. Given
m, z can take only values in Enm ⊆ Rnm . To enable the use of reversibility,
the following condition has to be met for all pairs z, z′:

nm + nmm′ = nm′ + nm′m, (5.2)

where nmm′ is the dimension of the vector of random numbers used in
determining the candidate state z′ in state z and nm′m is the dimension of
the vector of random numbers used in the reverse operation. This condition
is to ensure that both sides of the reversibility equation have densities on
spaces of equal dimension:

f(z | m) qmm′(z, z′) = f(z′ | m′) qm′m(z′, z). (5.3)

Here f(z|m) is the density of z in the target distribution, given the dimension
nm, and qmm′(z, z′) is the proposal density of proposing z′ in z, given that a
move is proposed from the model dimension nm to nm′ .
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For our purposes it is enough to consider the situation where nmm′ > 0
and nm′m = 0, when m′ > m. That is, we use a stochastic proposal only
when moving to a state with higher dimension. In the reverse operation a
deterministic proposal is used instead; thus nm′m = 0.

Piecewise constant model. Consider a model consisting of a single
piecewise constant function. Using the notation discussed, denote the number
of the pieces of the piecewise constant function by m; then the other
parameters are c1, . . . , cm−1, α1, . . . , αm, where c1, . . . , cm−1 are the change
points of the function and α1, . . . , αm are the function levels. The dimension
of the model is nm = 2m − 1.

We update each change point and each level componentwise. These
updates do not change the dimension of the model. For the number of
pieces we first choose between increasing or decreasing the value with some
probabilities qadd and qdel = 1 − qadd, and then propose to insert or delete
one piece at a time. Thus,

q(m, m′) =

⎧⎨
⎩

qadd if m′ = m + 1
1 − qadd if m′ = m − 1
0 otherwise

(5.4)

Inserting a piece means adding one change point, which splits one of the
pieces into two. In addition to the location of the new change point, the
function levels around the change point must be determined. We employ
a strategy introduced by Green [155], which maintains the integral of the
piecewise constant function in the adding and removing processes. This
property of the proposal distribution is often useful for achieving good
convergence and for covering the target distribution exhaustively in feasible
time.

Denote the function value in the piece to be split by α0, the candidate
for the new change point by c′, the candidate for the function value to the
left from c′ by α′

l, and the candidate for the function value to the right from
c′ by α′

r (Figure 5.3). We should define how the parameters of the new state
(c′, α′

l, α
′
r) are determined from the current state (α0) and a vector of random

numbers.
We use two random numbers, u = (u1, u2), in constructing the new state;

thus, nmm′ = 2. We draw u1 uniformly from range ]Ss, Se[ and set c′ = u1.
For the function values, we draw u2 from the normal distribution N(0, σ ·α0),
where σ is a constant that controls how close the new function values are to
the original value.

Accordingly, we have the following function g for determining the new
state:

g(α0, u1, u2) = (g1(α0, u1, u2), g2(α0, u1, u2), g3(α0, u1, u2)),

where
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Fig. 5.3. Changing the number of pieces of a piecewise constant function. When
adding a piece, the new change point c′ is inserted between the existing change
points cl and cr; w1 and w2 are the distances of c′ from cl and cr, respectively. The
function value before the operation is α0. The new levels α′

l and α′
r are determined

according to Equation 5.5. The remove operation is carried out similarly in reverse
order.

g1(α0, u1, u2) = α0 + u2/w1 = α′
l,

g2(α0, u1, u2) = α0 − u2/w2 = α′
r,

g3(α0, u1, u2) = u1 = c′,
(5.5)

and

u1 ∼ U(Ss, Se),
u2 ∼ N(0, σ · α0).

(5.6)

Here w1 is the distance of the new change point c′ from the previous change
point cl (or the start point of the observation period if there is no change
point before c′), and w2 is the distance of the new change point from the
next change point cr (or the end point of the observation period, if there is
no change point after c′). Thus w1 = c′ − cl and w2 = cr − c′.

Reversibility condition. Now we can write the reversibility condition more
explicitly. For the transition into a higher dimension, the following conditions
should be met:

1. m′ = m + 1 is proposed.
2. given the proposal of m′, z′ = g(z, u) is proposed.
3. (m′, z′) is accepted.

Hence, we can write the reversibility condition as follows:∫
Am

∫
Imm′p(m)f(z|m) qadd a[(m, z), (m′, z′)] qmm′(z, u)dzdu

=
∫

Bm′
Im′mp(m′)f(z′|m′) qdel a[(m′, z′), (m, z)] dz′,
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where Am ⊆ Enm , Bm′ ⊆ Enm′ , p(m) is the probability of m and
Imm′ and Im′m are the indicator functions Imm′ = 1(z ∈ Am, g(z, u) ∈ Bm′),
Im′m = 1(g−1(z′) ∈ Am).

Now we want to present the right-hand side in terms of variables z and
u instead of z′. Since the function g of the Equation 5.5 is a differentiable
bijection, we can substitute the variables z = (α0) and u = (u1, u2) for
z′ = (α′

l, α
′
r) (for the transformation of random variables, see, e.g. [161]):

∫
Am

∫
Imm′p(m) f(z|m) qadd a[(m, z), (m′, g(z, u))] qmm′(z, u) dzdu

=
∫ ∫

p(m′)f(g(z, u)|m′) qdel a[(m′, g(z, u)), (m, z)] | J | dzdu,

where the Jacobian |J | of the transformation is

| J | = |∂(g(z, u))
∂z∂u

| =

∣∣∣∣∣∣∣
∂α′

l

∂α0

∂α′
l

∂u1

∂α′
l

∂u2
∂α′

r

∂α0

∂α′
r

∂u1

∂α′
r

∂u2
∂c′
∂α0

∂c′
∂u1

∂c′
∂u2

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 0 1

w1

1 0 − 1
w2

0 1 0

∣∣∣∣∣∣ =
1

w1
+

1
w2

=
w1 + w2

w1w2
.

The reversibility condition is met if

p(m)f(z | m) qadd a[(m, z), (m′, g(z, u))] qmm′(z, u)

= p(m′)f(g(z, u) | m′) qdel a[(m′, g(z, u)), (m, z)] | J |.

Hence the acceptance ratio for inserting a piece is

a[(m, z), (m′, z′)] = min

(
1,

p(m′)f(z′ | m′)qdel

p(m)f(z | m)qadd qmm′(z, u)

∣∣∣∣∣∂(g(z, u))
∂z ∂u

∣∣∣∣∣
)

= min

(
1,

P r(m + 1)
Pr(m)

Pr(c′
1, . . . , c

′
m)

Pr(c1, . . . , cm−1)
Pr(α′

l)Pr(α′
r)

Pr(α0)
× L(z′)

L(z)
×

qdel

qadd

1
m + 1

1
(Se − Ss) · y

× w1 + w2

w1w2

)
.

Here Pr(m) is the prior probability of m being the number of pieces,
Pr(c1, . . . , cm−1) is the prior density of the change points c1, . . . , cm−1, and
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Pr(α0) is the prior density of function value α0. Further, L(z′) and L(z) are
the likelihoods in the candidate state and current state, respectively, and qadd

and qdel are the probabilities of proposing to insert a new segment and delete
an existing one. The probability of removing a specific piece is 1/(m+1), and
the density of inserting a specific piece is 1/(Se−Ss)·y, where y ∼ N(0, σ·α0).
Finally, (w1 + w2)/w1w2 is the Jacobian of the deterministic transformation
of the random variables when changing the dimension of the model. Notice
also the exception of the potential initial state where the denominator is zero;
then the acceptance rate is 1.

The acceptance probability for the reverse remove operation yields
reversibly a[(m′, z′), (m, z)] = min(1, 1/a[(m, z), (m′, z′)]).

5.3 Examples

In this section we give some simple examples of applying the framework to
biological data. Our focus is on describing the applicability of the method,
not on interpretation of the results.

5.3.1 Segmenting GC Content

We illustrate applying the reversible jump MCMC methods to time series
data by modeling GC content in human chromosome 10 with a variable-
dimension piecewise constant model. The graphical representation of the
model was shown at the right in Figure 5.2. We computed the GC content
by taking the proportion of bases C and G in the window of 250 kbp around
every 50,000th base in the DNA sequence. This resulted a time series of 2688
observations.

The joint probability distribution M(θ, S) of time series data S and model
parameters θ = (m, α1, . . . , αm, c1, . . . , cm−1) is

M(θ, S) = P (m)P (αi, ci|m)P (S|αi, ci).

The levels of the function αi, the change times ci, and the number of
pieces m are random variables. We assign the following prior distributions to
them:

number of pieces m ∼ Geom(γ),
levels αi ∼ Norm(µ, σ2),
change points ci ∼ Unif(Ss, Se).

(5.7)

We choose fairly noninformative priors by setting µ = 50, and σ2 = 225.
Ss and Se are the start and end points of the DNA sequence in the
chromosome. In the first trial we set γ = 0.5, in the second one γ = 0.9999.
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Thus in the second trial the prior strongly supports smaller numbers of
segments.

We assume the likelihood being of the form described, that is,

log L(S) ∝
n∑

j=1

(α(tj) − y(tj))2,

where y(tj) is the observation at position tj and n is the number of
observations.

The simulation was run with 1,000,000 burn-in iterations and 10,000,000
actual iterations. Every 10th parameter value was picked up, and
consequently the sample size k = 1, 000, 000.

The results are shown in Figures 5.4 and 5.5. The left graph in Figure 5.4
shows the marginal distribution of the number of segments in case of γ = 0.5.
We see that the number of segments is fairly strongly concentrated around
350. After setting γ = 0.9999 the mode of the distribution shifts down to 210.
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Fig. 5.4. Marginal posterior distribution of the number of segments m in the
GC content of human chromosome 10. Prior distribution of m is the geometric
distribution with (left) hyperparameter 0.5 and (right) 0.9999.

Figure 5.5 shows an approximation of the posterior mean of GC content
for the case γ = 0.5. It was obtained by computing α(tj) = 1

k

∑k
i=1 αi(tj)

for 2,000 pre-defined locations tj along the DNA sequence, where αi(tj) is
the value of α(tj) in ith sample. That is, the posterior mean Ef (α(tj)) is
approximated by averaging over k = 1, 000, 000 sample values:

Ef (α(tj)) =
∫ 100

0
α(tj)f(α, tj) dα ≈ 1

k

k∑
i=1

αi(tj). (5.8)

Figure 5.4 shows that the number of segments is fairly large, even for the
case γ = 0.9999. Thus the existence of segment structure for chromosome 10
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Fig. 5.5. Posterior mean of the GC content in human chromosome 10 obtained by
computing α(tj) = 1

k

∑k
i=1 αi(tj) for 2000 predefined locations tj along the DNA

sequence. The number of samples k = 1, 000, 000.

with respect to GC content is doubtful. The next example considers a case
where a segment structure apparently exists.

5.3.2 Modeling ORF and SNP Densities in the Human Genome

Next we consider modeling event sequence data, the ORF and SNP densities
in the human genome. A more detailed example of intensity modeling of event
sequence data is given in [112].

The event sequence is modeled as a Poisson process with a time-dependent
intensity function λ(t). Intuitively, the intensity function expresses the
average number of events in a time unit (see, e.g., [18, 161]).

Poisson loglikelihood of the event sequence S with occurrence times
t1, . . . , tn, is given by (see, e.g., [163])

log L(S | λ) = −(
∫ Se

Ss

λ(t)dt) +
n∑

j=1

ln(λ(tj)). (5.9)

We ran four similar trials, except for the prior specifications for the
number of pieces m. In the last trial we also changed the prior of the intensity
levels. The prior distributions were

number of pieces m ∼ Geom(γ),
levels λi ∼ Gamma(ν, η),
change points ci ∼ Unif(Ss, Se).

(5.10)

The hyperparameters of the geometric distribution are given in Table 5.1. In
the first and fourth trial, large values of m were strongly weighted; in the
third one we supported small values.

For the intensity levels, the gamma prior with hyperparameters ν =
0.005 and η = 0.5 was used in all but the last trial. In trial 4, we used
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Table 5.1. Parameter values for the different trials for modeling ORF density.
Prior distribution of intensity levels λi was a gamma distribution; ν and η indicate
the hyperparameters of the gamma distribution in each trial.

Trial 1 2 3 4
m ∼ Geom(γ); γ = 0.001 0.5 0.9 0.001

ν 0.005 0.005 0.005 0.001
η 0.5 0.5 0.5 0.1

hyperparameters ν = 0.001 and η = 0.1 instead (see Table 5.1). The
expectation of the gamma distribution is ν/η, so the prior had the same
mean 1/100 in all the trials. The variance, however, is ν/η2; thus in the first
three trials the prior variance was 1/200, and in the last one it was 1/100.
We will return to the interesting question of the effect of priors later.

During the burn-in period, a change of the value of m, that is, inserting
or deleting a segment, was proposed approximately 50,000,000 times, and
during the actual simulation run nearly 400,000,000 times. In the case of
the chromosome 1, for instance, a candidate state was accepted in 0.11 % of
the cases. Since the acceptance-rejection rates of the other parameters were
much higher, they were updated more rarely, approximately 40,000,000 times
during the actual run in the case of the intensity value in the first segment
λ1, for instance. The value of parameter m was picked up at approximately
every 100th iteration; that is, the sample size of m was 4,000,000.

Figure 5.6 shows the posterior average and standard deviation of the
number of segments for human chromosomes 1–22 in four trials with
different prior distributions. For each chromosome there are four errorbars
in the figure, each of which presents the posterior average and standard
deviation of the number of pieces in one trial. There are clear differences
between chromosomes. The differences are not explained by the sizes of the
chromosomes, though the size and the number of segments correlate. For
instance, there seem to be relatively few segments in chromosome 4 and
many segments in chromosomes 7 and 11. Chromosomes 16 and 18 have
about the same number of segments, but the number of segments needed
to model the distribution of ORFs on chromosome 16 is about twice the
number of segments for chromosome 18. Still, there seems to be a lot of
variation in chromosome 18 within a single trial as well as between the trials.
The variation is also remarkably large in chromosome 1, while chromosome
15 is divided into 16 or 17 segments in all the trials. The segmentations of
chromosomes 21 and 22 stay almost the same as well.

Figure 5.7 shows the posterior averages and deviations of the intensities
of ORF occurrence frequency for chromosomes 15 and 18. There are clear
segment boundaries in the chromosomes, indicating that various parts of
the chromosomes are qualitatively different. The 16 or 17 segments of
chromosome 15 that resulted in all the trials can easily be identified in the
figure.
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Fig. 5.6. The posterior average and standard deviation of the number of segments
for ORF occurrences on human chromosomes 1–22 in four different trials. For the
parameter values, see Table 5.1.
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Fig. 5.7. The posterior means and 99% percentiles of the intensity of ORF
occurrence in human chromosomes 15 and 18.

Chromosome 18 has many sharp change points and boundaries with
smaller variation between them. The slight changes inside the relatively stable
periods explain the instability of number of segments in the different trials.

The Bayesian framework and RJMCMC methods provide a conceptually
sound way of evaluation between models on the whole space of segmentations.
The likelihood of the model can always be improved by adding more
parameters to the model. By supplying prior probabilities to all the
combinations of the model parameters, the problem is shifted in Bayesian
analysis to investigating the joint probability distribution of the data and
the parameters. The question then takes the form of whether the advantage
gained in likelihood by adding more parameters exceeds the possible loss in
prior probabilities.

From the point of view of data mining, a particularly interesting problem
in segmentation and clustering more generally is finding the optimal number
of segments based on the given data. In a typical data mining problem, the
number of data is large, and there is little previous knowledge on the process
generating the data.

In the experiments on the ORF distribution, the results clearly indicate
differences between different chromosomes. The priors for the number of
segments are less informative in the first and fourth trials. In the second
trial small values were given considerably higher probability, and they were
emphasized even more strongly in the third trial. While giving higher prior
probabilities to smaller segment counts naturally decreases the expected
number of segments, the magnitude of the effect seems to be quite different
in different chromosomes.

An important aspect is that the posterior distribution of the number of
segments may be influenced more by the prior specification of the intensity
levels than the prior for the dimension of the model. This is because in the
higher dimension the joint prior density of the model consists of the product
of one more prior densities of intensity levels than in the lower dimension.
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This fact may cause problems when estimating the number of segments.
Assume, for instance, that very little prior knowledge is available as to the
possible intensity values. Accordingly, we would like to give wide uniform
prior distributions to the intensity levels. This practice would make sense if
the model dimension is fixed. However, for models with variable dimension,
inserting a new segment causes the joint density to drop more the wider the
prior distribution is.

The fourth trial illustrates this effect on the ORF distribution example.
Gamma(0.005, 0.5) priors were specified for the intensity levels λi in all the
trials except for the fourth one, for which Gamma(0.001, 0.1) distribution
was used instead. The prior distribution of the last trial doubles the prior
variance of the intensity levels. In all chromosomes, this change of prior has
a stronger impact on the posterior number of segments than increasing the
hyperparameter of the geometric prior of the number of segments from 0.001
to 0.5.

The sequence of SNP occurrences provides an example of a dataset where
segmentation is of no use for obtaining a condensed representation of the
data. Still, the RJMCMC methods can be used to model the continuous
intensity. Figure 5.8 shows examples of intensities of the SNP occurrences
from chromosomes 10 and 14. Only a few constant periods can be found as
the posterior average of the number of segments is several thousand in both
cases.
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Fig. 5.8. The posterior means and 99% percentiles of the intensity of SNP
occurrence in human chromosomes 10 and 14.

5.3.3 Modeling Interaction of Different Factors

In this section we model the influence of GC content on the intensity of ORF
occurrence. We extend the piecewise constant intensity model of section 5.3.2
as follows. In regions where GC content exceeds a parameter value β, we
increase the intensity by γ. The parameters β and γ are estimated from the
GC and ORF data.
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Hence, the intensity of ORF occurrence λ(t) is given by

λ(t) =
{

λ0(t) if GC(t) < β
λ0(t) + γ if GC(t) ≥ β

λ0(t) is a piecewise constant function as in Equation 5.10. The joint
distribution of the model parameters θ = (m, λ0,1, . . . , λ0,m,c0,1, . . . ,c0,m−1,
β,γ), event sequence data S1, and time series data S2 is

P (θ, S1, S2) = P (β)P (γ)P (m)P (λ0,j , c0,j |m)P (S1|λ0,j , c0,j , β, γ, S2).

Figure 5.9 shows a graphical representation of the model.
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Fig. 5.9. Graphical representation of the model for the interaction between GC
content and ORF occurrence. S1 is the sequence of ORF occurrences, and S2 is the
GC content computed at every 1000th base. I is an indicator function: I(t) = 1 if
(GC(t) ≥ β), and I(t) = 0 otherwise.

The GC content was computed by taking the proportion of bases C and
G in the window of 250 kbp around every 1000th base in the DNA sequence.
This resulted in a time series of 134,788 observations.

We ran two trials. The only difference between them was in the prior
specifications of the number of segments m. We chose m ∼ Geom(0.5) in
the first trial. In the second one we supported smaller values by setting
m ∼ Geom(0.9). For the other parameters the prior distributions were

• γ ∼ Unif(0, 10),
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• β ∼ Unif(1, 60) (largest value of GC content in data was 59.5),
• intensity levels λ0,j ∼ Gamma(0.5, 0.25),
• change points c0,j ∼ Unif(Ss, Se) (start and end points of the DNA

sequence).

Figure 5.10 shows the positive correlation of γ and β in both trials, which
strongly suggests dependence between GC content and ORF occurrence. The
values of γ are larger in the second trial. The reason is that adding segments
is relatively “cheap” in the first trial. Thus, the variation of intensity of
ORF occurrence can be mostly explained by the piecewise constant baseline
intensity λ0(t). Inserting a new segment is more costly in the second trial,
resulting in higher values of γ. Figure 5.11 reveals the negative correlation of
γ and the number of segments m, particularly clear in the second trial.
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Fig. 5.10. Interaction model: the average of γ in the two trials, given β ≤ 2.5 (the
leftmost bar), 2.5 < β ≤ 5.0 (the next bar), and so on.

5.4 Concluding Remarks

We have described the use of reversible jump Markov chain Monte
Carlo (RJMCMC) methods for finding piecewise constant descriptions of
sequential data. The method provides posterior distributions on the number
of segments in the data and thus gives a much broader view on the
potential data than methods (such as dynamic programming) that aim only
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Fig. 5.11. Interaction model: the average number of segments m in the first trial
(left), and in the second trial (right), given γ ≤ 0.5 (the leftmost bar), 0.5 < γ ≤ 1
(the next bar), and so on. Note the different scales of the y axes.

at finding a single optimal solution. RJMCMC methods are also widely
applicable: many different types of models can be used without any large
changes in the method. On the other hand, MCMC methods can be more
difficult to implement than discrete optimization techniques, and monitoring
convergence of the simulations is not trivial.

We gave a few example applications showing how the methods can be
used for biological data. The experiments on the GC content along human
chromosome 10 showed no clear segment structure. The result is probably
due to the relatively coarse resolution of the underlying data: we utilized GC
content computed on 250 kb windows. The segment structure on GC content
(so-called isochores) might be evident only on smaller scales. Similarly, the
evidence on segment structure of the distribution of SNPs is weak. The
situation is quite different for the distribution of ORFs. The results show
that the number of segments on different chromosomes varies in interesting
ways, and the numbers are remarkably constant even for drastic changes in
the priors. We also showed how more complex models including interaction
terms can be built.

The usefulness of RJMCMC methods is currently limited by the difficulty
of implementation. It might be interesting to search for some less powerful
but easier methods that could be used for sequence analysis.
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Gene Mapping by Pattern Discovery
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Summary
The objective of gene mapping is to localize genes responsible for
a particular disease or trait. We consider association-based gene
mapping, where the data consist of markers genotyped for a sample
of independent case and control individuals. In this chapter we
give a generic framework for nonparametric gene mapping based on
pattern discovery. We have previously introduced two instances of
the framework: haplotype pattern mining (HPM) for case–control
haplotype material and QHPM for quantitative trait and covariates. In
our experiments, HPM has proven to be very competitive compared to
other methods. Geneticists have found the output of HPM useful, and
today HPM is routinely used for analyses by several research groups. We
review these methods and present a novel instance, HPM-G, suitable for
directly analyzing phase-unknown genotype data. Obtaining haplotypes
is more costly than obtaining phase-unknown genotypes, and our
experiments show that although larger samples are needed with HPM-
G, it is still in many cases more cost-effective than analysis with
haplotype data.

6.1 Introduction

The first step in discovering genetic mechanisms underlying a disease is to find
out which genes, or more precisely, which polymorphisms, are involved. Gene
mapping, the topic of this chapter, aims at finding a statistical connection
between the trait under study and one or more chromosomal regions likely
to be harboring the disease susceptibility (DS) genes. Chromosomal regions
that cosegregate with the trait under study are searched for in DNA samples
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from patients and controls. Even though the coding parts of the genes—the
exons—cover only a small fraction of the human genome, the search cannot
be restricted to them: polymorphisms affecting disease risk may reside in the
introns or promoter regions quite far from the exons, having an effect on the
expression level or splicing of the gene.

All the important simple monogenic diseases have already been mapped,
or at least it is well known how it can be done. The general interest is
shifting toward complex disorders, such as asthma or schizophrenia, where
individual polymorphisms have rather weak effects. There may be epistatic
interaction between several genes, and some mechanisms may be triggered by
environmental factors. Complex disorders are also challenging clinically: it is
of primary importance that the diagnoses are based on identical criteria.
Systematic noise caused by inconsistent definitions for symptoms could
severely hinder the search for the genetic component of the disorder. The
mutation does not always cause the complex disorder (lowered penetrance),
or the same disorder may be caused by other factors (phenocopies). There are
other stochastic processes involved, such as recombinations and mutations,
and genealogies are usually known only a few generations back. For these
reasons, only probabilistic inferences can be made about the location of the
DS genes.

In this chapter we present haplotype pattern mining (HPM), a method of
gene mapping that utilizes data mining techniques. The chapter is organized
as follows. First, we review the basic concepts in genetics and gene mapping in
section 6.2. Next, we give an abstract generic algorithm for HPM in section 6.3
and present and evaluate three instances of that in section 6.4. Finally, we
give a summary of related work in section 6.5 and close with a discussion in
section 6.6.

6.2 Gene Mapping

Markers. Markers provide information about genetic variation among
people. They are polymorphic sites in the genome, for which the variants
an individual carries can be identified by laboratory methods. The location
of a marker is usually called a locus (pl. loci). The variants at a marker are
called alleles. We will use small-integer numbers to denote alleles throughout
the chapter. The array of alleles in a single chromosome at a set of markers
is called a haplotype.

Example 6.2.1. Let M1, M2, M3, and M4 be markers located in this order
along chromosome 1. Let the alleles at these marker loci in a given instance
of chromosome 1 be 1, 3, 2, and 1, respectively. The haplotype for this
chromosome over all the markers is [1 3 2 1], and the haplotype over markers
M2 and M4, for instance, is [3 1].
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Marker data are used only for making inferences about the genealogical
history of the chromosomes in the sample; the actual disease-predisposing
polymorphisms are not typically expected to be among the markers. If two
chromosomes have the same allele at a marker, the allele may be identical
by descent (IBD), inherited from a relatively recent common ancestor. It is
possible that two copies of same allele have different mutation histories, in
which case the two alleles are said to be identical by state (IBS). On the
other hand, different alleles at a marker in a pair of chromosomes do not
completely exclude the possibility of a recent common ancestor; the marker
may have mutated recently in one of the two lineages, or there might have
been a genotyping error.

Linkage. The concept of linkage is crucial for gene mapping. In meiosis the
human chromosomes are organized as homologous pairs lined up next to
each other. In a random recombination process, these aligned chromosomes
may form crossovers and exchange parts. Recombination can be modeled
with reasonable accuracy as a Poisson process. The number of crossovers
over a given genetic distance d follows Poisson distribution with mean d,
and the distance between two consecutive crossovers follows exponential
distribution with intensity parameter d. As a consequence, loci close to each
other in the same chromosome are closely linked, and crossovers in between
are rare. Genetic distances between loci are measured in Morgans (M): one
Morgan is the distance at which the expected number of crossovers in a
single meiosis is one. The relationship between genetic distance and physical
distance measured in base pairs (bp) is such that on the average roughly
1 Mb corresponds to 1 cM, but the ratio varies a lot throughout the genome.

Linkage disequilibrium. Because of recombinations, in a hypothetical
infinite randomly mating population all markers would eventually be in
linkage equilibrium, totally uncorrelated. The opposite phenomenon—linkage
disequilibrium (LD)—may arise from many different sources; random drift
due to finite population size, recent population admixture, population
substructure, and so on. From a gene-mapping perspective, utilizable LD
in present population results from chromosomes sharing fragments where no
crossovers have taken place since the most recent common ancestor. Genetic
bottlenecks, where an initially small population has gone through a relatively
long period of slow growth followed by rapid expansion, are an important
source for this type of LD. As the initial population is quite small, only a
handful of copies of a mutation, the founder mutations, may have entered the
bottleneck in different founder haplotypes. The effect of drift is at its strongest
during the period of slow growth, skewing the distribution of the founder
mutation frequencies. Consequently, only a few of the founder mutations are
likely to be present in the current population in significant numbers. Small
isolated founder populations such as Kainuu in northeastern Finland or the
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French Canadians are examples of recent bottlenecks. The whole Caucasian
population is thought to have gone through a bottleneck approximately
50,000 years ago as they migrated out of Africa [89]. LD decays over time, as
the chromosomes become more fragmented and conserved regions become
shorter (Figure 6.1). The expected length of a region conserved over g
generations is 2 M/g. LD resulting from the “out of Africa” bottleneck can
still be observed over a 100 kb range.

Fig. 6.1. Evolution of a chromosomal region over 20 generations. The thicker line
represents fragments from the original chromosome at generation 0. In the first two
meioses, crossovers at locations A and B have replaced the ends of the chromosome
by material from other chromosomes. After 20 generations only a short fragment
of the original chromosome has remained intact.

For an investigator, linkage disequilibrium is both a friend and an enemy.
Because of the confounding effect, nearby polymorphisms are correlated,
and other markers can be used as surrogates for the disease susceptibility
mutation. Therefore a reasonably dense map of markers covering the genomic
region under study can be sufficient for gene mapping. Furthermore, without
LD all polymorphic loci would be independent of each other, leading to
an unbearable multiple testing problem. On the other hand, LD makes it
extremely hard to tell which polymorphism is behind the trait. Recent studies
[329] show that in Caucasian populations the genome consists of blocks of
20–100 kb, where there are effectively only a handful of different haplotypes
in each and no crossovers can be observed. It may be impossible to map
polymorphisms inside a block, yet a single block can contain several genes.

Gene mapping paradigms. Family studies using marker data from
extended pedigrees or sib pairs are based on detecting crossovers using a
sparse marker map. Roughly, the idea is to predict the location of the DS
gene to be where the marker alleles cosegregate with the trait value. However,
due to the relatively small number of crossovers observable in pedigrees, the
resolution of such studies is not particularly good. Therefore family-based
linkage analysis is used as the first step of a mapping project to guide which
regions to focus on in subsequent analyses.
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Case–control studies of independent individuals can in principle take
advantage of a much larger number of historical crossovers in the (unknown)
genealogy leading to the observed sample. It is possible to get only indirect
evidence of these crossovers in the form of shared patterns apparently
inherited from a common ancestor, adding to the uncertainty of the analysis.

The concept of IBD generalizes to chromosomal regions: a region is IBD in
a homologous pair of chromosomes if no crossovers have occurred in either of
the lineages since the most recent common ancestor. As a result, haplotypes
for any set of markers within the IBD region are identical save for marker
mutations. Multimarker haplotypes are more informative than single alleles,
and consequently haplotype sharing is more convincing evidence of IBD
status.

All the chromosomes bearing a mutation inherited from a common
ancestor also share a varying amount of the surrounding region IBD
(Figure 6.2). All case–control methods are based on detecting haplotypes
corresponding to these IBD regions and their association to the trait. In the
proximity of the DS gene, LD can be increased artificially via the selection of
the study subjects. If the affected subjects are overrepresented in the sample,
the set of haplotypes will be enriched with the haplotype bearing the DS
mutation. This is particularly useful if the causal mutation is rare.

Fig. 6.2. Chromosomes (in a set) that are IBD at the location denoted by the
vertical dashed line also share a varying length of the surrounding sequence (left).
This sharing is reflected by the corresponding haplotypes (right).

Acquisition of data. The two most common types of markers are single-
nucleotide polymorphisms (SNPs) and short tandem repeats (STRs), also
known as microsatellites, where the number of repeats of a short sequence,
typically 2–4 bases, varies. STRs are the more informative of the two, as the
number of alleles may be more than a dozen. The number of alleles in SNPs
is 2, but SNPs are much more frequent in the genome. They thus enable
denser marker maps and are more suitable for fine mapping. SNPs are also
more stable than STRs. Mutation rates for SNPs are estimated at 10−8 per
meiosis, whereas for STRs they can be as high as 10−3.
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The human genome is organized in 22 pairs of homologous chromosomes
(autosomes) and a pair of sex chromosomes. A marker residing in an autosome
or in the pseudoautosomal region of the sex chromosomes has two instances
in any individual. The process of reading the alleles at a marker is called
genotyping, and the pair of alleles is the genotype at the marker. Current
laboratory techniques produce phase-unknown genotypes; there is no telling
which of the two alleles is of paternal or maternal origin. The term genotype
also applies to any set of markers; a multimarker genotype is the array of the
single-marker (phase-unknown) genotypes.

Since laboratories produce phase-unknown genotype data, haplotypes
are not readily available for analysis. Haplotypes can be inferred from the
genotypes of relatives. The most common procedure for obtaining case–
control haplotype data is to genotype family trios consisting of the parents
and a child. Assuming that the genotypes are known for all three, the phases
of the alleles of the child can be determined in all cases but the one in which
all three have a similar heterozygous genotype at the marker.

Example 6.2.2. Assume that the phase-unknown genotypes over two
markers in a family trio are

M1 M2
father 1,2 1,2

mother 2,3 1,2
child 2,3 1,2

For the first marker we can infer the alleles that the child has inherited from
the mother(3) and the father(2), but for the second marker there is no way
to determine the phases.

Additionally, the nontransmitted parental alleles are also determined. As
a result, four independent haplotypes can be obtained from a trio: the two
transmitted and the two nontransmitted pseudohaplotypes. Note that the
nontransmitted pseudohaplotypes are the complements of the transmitted
haplotypes with respect to the parental genotypes and do not necessarily
correspond to any real chromosomes.

At the present time, the cost of genotyping in a large-scale mapping study
is considerable. The need to detect DS genes in relatively small samples
motivates the development of more powerful methods for in silico analysis
of marker data.

6.3 Haplotype Patterns as a Basis for Gene Mapping

In this section we present a general framework, haplotype pattern mining
(HPM), for gene mapping based on haplotype patterns. HPM tests each
marker for association based on haplotype sharing around it. HPM looks for
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patterns in the marker data that could be informative about the location
of a DS gene. Since the information is essentially contained in haplotypes
reflecting IBD sharing in a part of a chromosome, the patterns are haplotypes
over subsets of the marker map that are likely to correspond to such IBD
regions.

In the following subsections we first present the generic HPM algorithm
in terms of three components: language L of haplotype patterns, qualification
predicate q over L, and marker scoring function s. Then we give a detailed
description for each of the components.

6.3.1 Outline of the Algorithm

The input for HPM consists of marker data (either a set of haplotypes, a set of
phase-unknown genotypes, or a combination set of both) and the associated
trait values. Optionally, the input may also include a set of explanatory
covariates, such as body mass index, age, sex, blood measurements, and so on.
Formally, let M = {1, . . . , m} be the marker map and D be an n×m matrix
of marker data; its columns correspond to markers, and its rows correspond
to observations, which may be haplotypes or genotypes. If the ith observation
is a haplotype, then Dij ∈ Aj ∪ {0}; otherwise Dij ∈ (Aj ∪ {0})2. Aj is the
set of alleles at marker j, and 0 denotes a missing allele value. With genotype
data, the order of the alleles in a pair is insignificant. Let Y be the vector of
trait values associated with the haplotypes and genotypes. The trait may be
dichotomous or quantitative. In the case of haplotypes derived from a trio,
the trait value of the child can be used for the transmitted haplotypes, and
the trait value of the respective parent can be used for the nontransmitted
haplotypes. Let X be the matrix containing additional covariates.

The generic HPM works as follows. First, all potentially interesting
haplotype patterns are searched for. Let L be a language of haplotype
patterns, and q be a qualification predicate over L: q(p) is true iff p is a
potentially interesting pattern in the given dataset. Practical choices for q
set a lower bound for the number of occurrences of a pattern in the dataset.
Second, a score is calculated for each marker based on the relevant subset
of potentially interesting patterns. For a given marker, only patterns that
are likely to reflect IBD sharing at the marker are taken into account. Let
s : 2L × Perm(Y ) → R be a scoring function. Perm(Y ) denotes the set
of all permutations of vector Y . The score for marker j given trait vector
Y is s(Q ∩ Rj , Y ), where Q is the set of potentially interesting patterns
and Rj ⊆ L is the set of patterns that are relevant at marker j. Finally,
the statistical significance of the scores is measured, resulting in a P value
for each marker and an overall P value corrected for testing over multiple
markers. This necessitates the definition of a null hypothesis, and a means
for comparing the observed scores to the distribution of the scores under the
null hypothesis.
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HPM does not model the process generating the trait values or marker
data. Therefore we can test only the association between the trait and features
of the marker data. The null hypothesis “The values of the trait vector are
independent of the haplotypes and genotypes” can be tested by randomizing
the relationship between the two using a permutation test. We require q to be
invariant with respect to permutations of the trait vector. This way we can
enumerate the set of patterns satisfying q once, and use the set for calculating
the markerwise scores in the permuted data as well.

The algorithm for generic HPM is given in Figure 6.3. The markerwise
P value can be used for predicting the location of the DS gene. The marker
with the lowest P value is a natural choice for a point estimate. The corrected
P value is good for assessing whether there is a DS gene in the investigated
region in the first place or not.

Algorithm: Generic HPM
Input: Pattern language L, qualification predicate q, scoring function s, marker
data D, trait vector Y and possibly covariates X.
Output: Markerwise scores yj and P values Pj for each marker j, a corrected
overall P value.

Method

1. Find all potentially interesting patterns: Q = {p ∈ L | q(p)}.
2. Compute the score for each marker j : yj = s(Q ∩ Rj , Y ).
3. For i ∈ {1, . . . , r}, where r is the number of iterations in the permutation test,

do
4. generate a randomly permuted trait vector Y (i) ∈ Perm(Y ).
5. compute the score for each marker j : y

(i)
j = s(Q ∩ Rj , Y

(i)).
6. Compute markerwise P values for each marker by contrasting the observed

scores to the samples drawn from the null distributions.
7. Compute an overall corrected P value for the best finding.

Fig. 6.3. Algorithm for generic HPM. Details are given in the text.

6.3.2 Haplotype Patterns

Haplotype patterns serve as discriminators for chromosomal regions that are
potentially shared IBD by a set of chromosomes in the dataset. Language L
of haplotype patterns consists of haplotypes over subsets of the marker map,
with a few constraints. Marker maps with over hundred markers are not
uncommon today; in the near future maps of several thousand of markers
can be expected. The number of possible haplotypes grows exponentially
with the number of markers in the map. It is not possible to consider all the
possible haplotypes in the analysis, but on the other hand, not all haplotype
patterns are biologically conceivable. Meaningful patterns correspond to IBD
sharing between chromosomes, so markers included in a pattern should form a
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contiguous block. Allowing a restricted number of wildcards within a pattern
may be desirable, as there may be marker mutations breaking an otherwise
IBD region, or there may be markers having a lot of missing or erroneous allele
values. Additionally, haplotypes extending over very long genetic distances
are highly unlikely to survive over many generations and meioses, and
therefore the set of patterns to be considered can be restricted with an upper
limit for the genetic distance between the leftmost and rightmost markers
that are assigned with an allele.

Let p = [p1 · · · pm] be a haplotype pattern, where pj ∈ Aj ∪ {∗}, Aj is
the set of alleles at marker j, and ∗ is a wildcard symbol that matches any
allele in the data. Pattern p overlaps marker j, or marker j is within pattern
p, if j is between the leftmost and rightmost markers bound in p (inclusive).
Length of p can be defined as either (1) the genetic distance between the
leftmost and rightmost marker bound in p or (2) the number of markers
between and including the leftmost and rightmost marker bound in p. We
define language L of patterns as set of such vectors p = [p1 · · · pm], where
length(p) ≤  and either (1) the number of wildcards (∗) within p is at most
w or (2) the number of stretches of consecutive wildcards within p is at most
g and the length of such stretches is at most G. Pattern parameters , w, g,
and G are given by the user.

Haplotype i matches pattern p iff for all markers j holds: pj = ∗ or
pj = Dij . The frequency of pattern p, freq(p), is the number of haplotypes
matching p. With genotype data things are more complicated; a match is
certain only if at most one of the markers assigned with an allele in the
pattern is heterozygous in a genotype. A match is possible if at least one of
the alleles at each marker in the genotype matches the corresponding allele
in the pattern. One possibility for handling the uncertain cases is optimistic
matching, where a genotype matches a pattern if any of the possible haplotype
configurations matches it: genotype i matches pattern p iff for all markers
j holds: pj = ∗ or pj = g1 or pj = g2, where (g1, g2) = Dij . In section
6.4.3 we will show that this simplistic approach works surprisingly well. More
elaborate schemes are possible, e.g., genotypes can be weighted by 21−n,
where n is the number of heterozygous markers in the genotype which are
also assigned with an allele in the pattern.

Example 6.3.1. Let p = [∗ ∗ 1 ∗ 2 ∗] be a haplotype pattern over markers
(1, . . . , 6). The pattern p overlaps markers 3, 4 and 5 and is matched by, for
example, haplotype [3 2 1 4 2 0] and genotype [(1,1) (1,2) (1,1) (2,4) (1,2)
(2,3)]. Genotype [(1,1) (1,2) (1,2) (2,4) (1,2) (2,3)] may match p, depending
whether allele 1 at marker 3 and allele 2 at marker 5 are from the same
chromosome or not. With optimistic matching, we consider this possible
match as a match.
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In the instances of HPM we have used, the qualification predicate is
based on a minimum frequency: q(p) ≡ freq(p) ≥ fmin, where the minimum
frequency is either given by the user or derived from other parameters and
some summary statistics of the data, such as sample size and the number of
disease-associated and control observations.

6.3.3 Scores

The purpose of the scoring function is to produce a test statistic for each
marker, measuring total association of the marker to the trait over all
haplotype patterns that are relevant at the marker. The higher the score,
the stronger the association. We define the set Rj of relevant patterns at
marker j as the set of patterns overlapping marker j.

A very simple—yet powerful—scoring function, used in [403, 404], counts
the number of strongly disease-associated patterns overlapping the marker:

s(Qj , Y
′) = |{p ∈ Qj | A(p, Y ′) ≥ amin}|, (6.1)

where Qj = Q ∩ Rj and A(·) is a measure for pattern–trait association
or correlation. The association threshold amin is a user-specified parameter.
Table 6.1 illustrates the procedure.

Table 6.1. This table illustrates the computation of markerwise scores with
association threshold Zmin = 3. The patterns are ordered by the strength of
association. Note that the wildcards within a pattern are included in the score
for that marker.

Pattern M1 M2 M3 M4 M5 M6 Z

p1 ∗ ∗ 2 ∗ 1 ∗ 5.8

p2 ∗ 1 2 1 3 ∗ 4.4

p3 ∗ 2 2 ∗ 1 ∗ 4.0

p4 1 2 2 ∗ 1 ∗ 3.4

p5 ∗ 1 2 1 3 3 2.8

Score 1 3 4 4 4 0

Another scoring function, used in [306, 359], measures the skew of the
distribution of pattern–trait association in the set of overlapping patterns.
The skew is defined as a distance between the P values of pattern–trait
association tests for the patterns in Qj and their expected values if there was
no association:

s(Qj , Y
′) =

1
k

k∑
i=1

(Pi(Y ′) − Ui) log
Pi(Y ′)

Ui
, (6.2)
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where k = |Qj |, P1(Y ′), . . . , Pk(Y ′) is the list of P values sorted into
ascending order, and U1, . . . , Uk are the expected ranked P values assuming
that there is no association and that patterns are independent, Ui = i

k+1 .
Both scoring functions consider each pattern as an independent source

of evidence. In reality, the patterns are far from independent, but the
assumption of independence is a useful approximation. An ideal scoring
function would take the structure in Qj into account.

In all current instances of HPM, the scoring function measures the
pattern–trait association independently for each pattern. A pattern whose
occurrence correlates with the trait is likely to do well in discriminating the
chromosomes bearing the mutation. A meaningful test for this correlation
depends on the type of data. With a dichotomous trait, e.g., affected–
unaffected, association can be simply tested using the Z-test (or χ2-test) or
Fisher’s exact test for a 2-by-2 contingency table, where the rows correspond
to the trait value and the columns to the occurrence of the pattern:

M N
∑

A nAM nAN nA
U nUM nUN nU∑

nM nN n

Let us assume that there are nM observations that match pattern p and
nN observations that do not match p, and that there are nA affected and nU
unaffected observations in total. Let the frequencies in the 2-by-2 contingency
table, where the rows correspond to the trait value (A or U) and the columns
to matching (M) or not matching (N) p, be nAM, nAN, nUM, and nUN,
respectively. The value of the test statistic

Z =
(nAMnUN − nUMnAN)

√
n√

nMnN(nAM + nAN)(nUM + nUN)
(6.3)

is approximately normally distributed. A one- or two-tailed test can be used.
A one-tailed test is appropriate for patterns with a positive correlation to the
trait. Assuming that there are no missing alleles in the data, it is possible to
derive a lower bound for pattern frequency given the association threshold

fmin =
nAnx

nCn + nx
, (6.4)

where x is the association threshold for χ2 statistic or the Z threshold squared
(see [403] for details). No pattern with a frequency lower than fmin can be
strongly associated. Even if there are missing alleles, this lower bound can be
used—it is not imperative that all the strongly associated patterns satisfy q.

With a quantitative trait, the two-sample t-test can be used for identical
means between the group of chromosomes matching the pattern and those
not matching it. The number of degrees of freedom (number of chromosomes
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minus two) is usually large enough to justify the use of the Z-test instead of
the t-test.

If explanatory covariates are included in the data, a linear model can be
formulated,

Yi = α1Xi1 + . . . + αkXik + αk+1Ii + α0, (6.5)

where Yi is the trait value for chromosome i, Xij is the value of the jth
covariate for the ith observation, and Ii is an indicator variable for the
occurrence of the tested pattern. Its value is 1 if the pattern matches the ith
observation, otherwise 0. The significance of the pattern as an explanatory
variable can be tested by comparing the best-fit model to the best-fit model
where αk+1 = 0.

Missing alleles in the observations are dealt with in a conservative manner:
if an allele is missing at a marker bound in pattern p and there is a
mismatch in any other marker, then the observation is counted as a mismatch.
Otherwise we cannot know for sure whether p occurs in the observation, and
to avoid any bias we ignore the observation when calculating the association
for pattern p.

6.3.4 Searching for Potentially Interesting Haplotype Patterns

Let � be a generalization relation in L: p � p′ if any observation matching p′

also matches p. The predicate q is monotonous in � if p � p′ ∧ q(p′) ⇒ q(p),
which is true for q(p) ≡ freq(p) ≥ fmin. With monotonous q, set Q of patterns
satisfying q can be efficiently enumerated using data-mining algorithms [5]
or standard depth-first search (implementation for HPM given in [404]).
Otherwise, a monotonous auxiliary predicate qm such that q(p) ⇒ qm(p)
can be introduced. The set of patterns satisfying qm can be enumerated as
described above, and each of these patterns can then be individually tested
for q.

With some choices for q and s, it is possible that pattern p does not
contribute to the score of any marker in any permutation of Y even if q(p)
holds. Marginal speed-up can be achieved if q in step 1 of the algorithm
is replaced with q′ : q′(p) ≡ q(p) ∧ ∃j, Y ′ ∈ Perm(Y ) : p contributes to
s(Q ∩ Rj , Y

′).

Example 6.3.2. Let us assume a Z-test is used with a dichotomous trait,
q(p) ≡ freq(p) ≥ fmin, and s(Q′, Y ′) = |{p ∈ Q′ | Z(p, Y ′) ≥ Zmin}|. The
maximum value attainable for Z can be calculated based on the numbers
of matching and nonmatching observations. If the maximum value is below
the association threshold Zmin, the pattern is rejected. Given n, nM , nN, nA,
and nU, the largest Z value is achieved when nAM and nUN are maximized:
if nM ≥ nA, then nAM = nA, nUM = nM − nA, nAN = 0, and nUN = nN, else
if nM ≥ nC, then nAM = nM, nUM = 0, nAN = nN − nC, and nUN = nC;
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otherwise nAM = nM, nUN = nN, and nAN = nUM = 0. If negative
associations are considered, the minimum value of the Z statistic has to
be calculated as well. This can be done analogously by swapping A and U in
the formulae. A similar procedure is possible for Fisher’s exact test.

6.3.5 Evaluating Statistical Significance

With real data, the allele frequencies and marker spacing vary across the
marker map. Consequently, the distribution of scores varies as well, and the
scores as such are not necessarily a good indicator of the location of the DS
gene. Instead, the significances of the markerwise scores should be evaluated.
HPM computes empirical P values for the markers using a permutation test.
Figure 6.4 illustrates a successful localization with simulated data.

Let y
(1)
j , . . . , y

(r)
j be the sample from the score distribution for marker j

under the null hypothesis, and let yj be the observed score at the marker.
The empirical P value for the marker is then

P̂ =
|{i ∈ {1, . . . , r} | y

(i)
j ≥ yj}|

r
.

As always with permutation tests, the number of iterations should be
sufficiently large for the P value estimates to be accurate. P̂ ∼ 1

r Bin(r, P ),

and its standard deviation is
√

1
r P (1 − P ). As a rule of thumb, at the desired

significance level at least 50 iterations should have a score greater than the
critical value, e.g., at α = 0.05 at least 1,000 iterations should be performed.

The markerwise P values are not corrected for testing over multiple
markers, and they should be understood as a means of ranking the markers
only. However, a single corrected P value for the best finding can be obtained
with another permutation test using the smallest markerwise P value as the
test statistic. This P value can also be used to answer the question whether
there is a DS gene in the investigated region in the first place or not. The
two nested permutations can be carried out efficiently at the cost of a single
test (see [360] for details).

6.4 Instances of the Generalized Algorithm

We present three instances of the generalized HPM algorithm. The original
version for haplotype data and dichotomous traits [403, 404] and QHPM for
quantitative traits and covariates [359, 306] have been previously published.
In this section we introduce a third instance—HPM-G for phase-unknown
genotype data.

We demonstrate the performance of the three instances in various settings
using simulated data. We used the Populus simulation package [403, 305] for
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Fig. 6.4. The graph on the left shows the scores (solid line) and critical values at
significance levels α = 0.001, 0.002, 0.005, 0.01, 0.02 and 0.05 (dotted lines) over 101
evenly spaced markers. The graph on the right shows the negated logarithms (base
10) of the corresponding P values. The vertical line denotes the correct location of
the DS gene.

generating realistic data sets for the analyses. In each of the simulations a
small isolated founder population was generated, growing exponentially from
an initial 100 people to 100,000 people over 20 generations. In each setting,
a single 100 cM chromosome was simulated. The marker maps consisted
either of 101 microsatellite markers or 301 SNP markers equidistantly spaced
over the chromosome. A denser map was used with SNP markers because
a single SNP marker is much less informative than a microsatellite marker.
Each simulation was repeated 100 times to facilitate power analysis. We are
interested in the localization power as a function of the tolerated prediction
error. For example, in Figure 6.5a the 60% curve at 2 cM shows that for
70% of the replicates the predicted location was no more than 2 cM off the
correct location. At the scale of the data sets, a mapping result is considered
acceptable if it narrows down the 100 cM chromosome into a 20 cM or smaller
region.

We did not apply permutation tests in the power analyses but used the
scores as a basis for the localization instead: the point estimate for the gene
location is the marker with the highest score. This way we were able to carry
out the power analyses in much less time. Because there was no variation
in the marker density over the chromosome and the alleles in the initial
population were drawn from the same distribution for each marker, the score
distributions are likely to be quite similar for all markers. We have previously
shown that on this kind of data it does not make much difference whether
the localization is based on the P values or the scores [403].

6.4.1 Original HPM for Haplotype Data and Dichotomous Trait

In the original version of HPM for haplotype data and dichotomous trait,
we use the simple scoring function that counts the number of strongly
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Fig. 6.5. Performance of HPM. (a) Effect of phenocopy rate on localization
accuracy. (b) Effect of the number of missing alleles on localization accuracy. (c)
Comparison between HPM and the multipoint TDT of Genehunter2. Phenocopy
rates were at 80%, 85%, and 90%. The dotted curve at the bottom of every power
graph denotes the power of random guessing. (d) Successful localization on real
Type 1 diabetes data. The vertical line shows the correct location.

associated patterns, described in Equation 6.1. The χ2-test is used for
measuring pattern–trait association, and only positively associated patterns
are considered. The frequency threshold is derived from the association
threshold x using Equation 6.4.

The marker map consisted of microsatellite markers each with one
common allele with frequency 0.4 and four alleles with frequency 0.15. The
frequency of the disease-predisposing mutation was approximately 2% in
each data set. The ascertainment of data was conducted as follows: 100 trios
with an affected child were randomly chosen from the final population. The
haplotypes were reconstructed from the trios and all uncertain alleles were
set to zero denoting a missing value. The parameters for HPM were the
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same for all experiments: maximum length for patterns was seven markers,
association threshold was nine, and one gap of up to two markers was allowed.
The execution time was less than 1 second without the permutation test and
about 20 seconds with 1000 permutations for a single replicate on a Pentium
4 at 1.4 GHz.

First, we simulated datasets with different phenocopy rates ranging from
60% to 90%. The results in Figure 6.5a show that the localization power
reaches its maximum at a phenocopy rate between 60% and 70% and
decreases steadily with increasing phenocopy rate, as expected.

Next, we assessed the effect of missing data by randomly removing 2%,
5%, and 10% of the marker genotypes in the data with an 80% phenocopy rate
prior to haplotype reconstruction. This procedure resulted in approximately
8%, 15%, and 25% of missing alleles in the haplotype data. Due to haplotyping
ambiguities, ∼ 4% of the alleles were missing even if there had not been any
missing genotypes in the trios. The results in Figure 6.5b show that up to
15%, there is practically no loss in power, which demonstrates remarkable
tolerance for missing data.

To put the results into perspective, we compared HPM to TDT of
Genehunter2 [232]. With TDT we considered haplotypes up to four markers
in length (maximum in Genehunter2), and used the centerpoint of the best
haplotype as the point estimate. The results (Figure 6.5c) show that at a
phenocopy rate of 80% there is virtually no difference between the methods,
but at higher rates HPM is clearly superior.

Finally, we showcase the method on a real Type I diabetes data set
[25, 403]. There are 25 markers spanning a region of 14 Mb in the data.
Two DS genes are known to reside in the region, very close to each other.
We downsampled the original data set consisting of 385 sib-pair families to
100 trios (half the data size used in [403]). The results obtained with 100,000
permutations are shown in Figure 6.5d. The marker closest to the genes
gives the second best P value 0.00014. The corrected overall P was 0.0015,
indicating that the observed association is highly unlikely to be a coincidence.

6.4.2 QHPM for Quantitative Trait and Covariates

The diagnostics of a complex disease are often based on a combination of
symptoms and quantitative measurements. For example, a possible diagnosis
is (X1 ≥ A∧ (X2 ≥ B ∨S)), where X1 and X2 are values of two quantitative
subtraits and S is a proposition for a symptom. Different patients may have
completely different genetic contributors and pathogenesis. It may be easier
to find the quantitative trait loci (QTLs) affecting each of the subtraits
independently than to try to map all the DS genes directly based on the
affection status only.

The original HPM can cope only with a dichotomous trait. Generally,
dichotomization of a quantitative variable wastes much of the information.
Additionally, the power of the analysis is sensitive to the cut-off point.
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There may be other information about the subjects available, for example,
environmental and other nongenetic factors, e.g., smoking or nutritional
habits, and measurements that are not related to the diagnosis criteria. To be
able to fully utilize the available data, a method should be capable of using a
quantitative trait as the response variable and using the other measurements
as explanatory covariates.

QHPM is a version of HPM designed to meet the criteria mentioned
earlier. It uses the linear model given in Equation 6.5 for measuring pattern–
trait association and the scoring function given in Equation 6.2. We next
assess the performance of QHPM on simulated data and compare it to QTDT
[1], an accommodated version of TDT. The results have been previously
published in [306].

The simulations were carried out in the manner described in section 6.4.1,
except that there were only four alleles for each marker: one common allele
with initial frequency 0.4 and three alleles with frequency 0.2. The disease-
predisposing mutation was inserted into six randomly chosen chromosomes
in the initial population. Liability for the disease was calculated using the
formula

L = Ag + e1 + e2 + r1 + C,

where g is an indicator variable for the presence of the mutation in
the individual, e1 and e2 are environmental factors, and r1 is a random
component. The parameter values e1, e2, and r1 are drawn from standard
normal distribution for each individual. The strength of the genetic effect is
determined by A. The probability of being affected was given by the expit
function

P (Affected) =
eL

1 + eL
.

Two models were considered, an easy model with A = 5 and a difficult model
with A = 2. The value of C was adjusted so that the prevalence of the disease
is 5%. Additionally, five different quantitative variables were calculated from
the formula

Qj = jg + e1 + e2 + r2,

where j ∈ {1, . . . , 5} determines the strength of the genetic effect and r2 is a
random component drawn from the uniform distribution in [0,1]. The sample
was ascertained based on the affection status; 200 trios with an affected child
were randomly selected from the final population.

The maximum length of patterns was set to seven markers, and a single
one-marker gap was allowed. Minimum pattern frequency fmin was 10. The
results in Figure 6.6 show that QHPM clearly outperforms QTDT with the
difficult model. With the easy model, QHPM has a slight edge with Q5 and
Q3, whereas with Q2, QTDT gives better results. Q1 turned out to be too
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difficult for mapping; neither method could do better than random guessing
with either the easy or the difficult model.
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Fig. 6.6. The localization powers of QHPM (solid lines) vs. QTDT (dashed lines)
are illustrated for (left) the easy model and (right) the difficult model. The curves
correspond to quantitative traits Q5, Q3, Q2 and Q1 in top-down order.

6.4.3 HPM-G for Phase-Unknown Genotype Data

Haplotype data is not always easy to obtain; typically the haplotypes are
inferred based on genotypes of family members. The most cost-effective way
to obtain haplotypes for a case–control study is to genotype family trios, from
each of which four independent haplotypes can be extracted. The efficiency
of genotyping is 2/3, as there in fact are six haplotypes in a trio and two
of them are read twice. The parents need to be recruited; however, if they
are deceased or not willing to participate, genotyping of these additional
individuals is laborious and elevates the study expenses. Moreover, the phases
cannot always be determined in a trio. Using phase-unknown genotype data
directly for mapping, no extra individuals need to be genotyped, and no data
are missing due to haplotyping ambiguities. Additionally, recruiting problems
are alleviated and there is more freedom in selecting the cases and controls,
including the ratio between the two classes.

The abstract formulation of HPM allows it to be easily adapted for
genotype data. HPM for genotype data (HPM-G) is identical to the original
version, with the exception that optimistic pattern matching is used. All the
matches in the real haplotypes are found, but so is a large number of spurious
matches, which introduce noise to the markerwise scores. Consequently,
the number of frequent patterns found by HPM-G is typically an order of
magnitude larger than the number found by HPM.
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To compare HPM-G to HPM, we simulated both microsatellite and SNP
data sets in the way described in section 6.4.1. The datasets were ascertained
with equal costs of genotyping, assuming that the haplotypes for HPM are
reconstructed from family trios. The haplotype data sets consisted of 200
disease-associated and 200 control haplotypes, derived from 100 trios. The
dataset for HPM-G consisted of 150 affected and 150 control genotypes. In
both cases, 300 individuals need to be genotyped.

The parameters used in section 6.4.1 were used as a basis for parameter
settings. With SNP data, the maximum length of patterns was increased
to 19 markers to give an equal maximum genetic length of 6 cM. We used
a 50% elevated association threshold for HPM-G, as the expected number
of mutation carriers in the genotype datasets was 50% higher than that in
the haplotype datasets. The execution time of HPM-G was about 4 seconds
with microsatellite data, or 61

2 minutes with SNP data, for a single replicate
(Pentium 4, 1.4 GHz). With 1000 permutations, the execution times are
approximately 4 minutes and 6 hours, respectively. The execution time of
HPM with SNP data was 6 seconds without the permutation test and 3
minutes and 40 seconds with 1000 permutations.

We compared the two methods at four different phenocopy rates with
both microsatellite and SNP data. From the results shown in Figure 6.7a,
we can conclude that with microsatellite data HPM-G can tolerate slightly
higher phenocopy rates than HPM with equal genotyping costs. With SNP
data the methods are evenly matched (Figure 6.7b), but the execution time
of HPM-G is much higher. This is due to the fact that with SNP data the
number of spurious matches grows considerably.
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Fig. 6.7. Comparison of HPM-G and HPM with different phenocopy rates—70%,
80%, 85%, and 90%—in top-down order. (a) Localization accuracy on microsatellite
data. (b) Localization accuracy on SNP data.
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6.5 Related Work

Fine-scale mapping of disease genes by linkage disequilibrium has been
researched intensively since the 1990s. Lazzeroni [243] gives a good overview
of the work until 2000. The earliest work relied on methods that measure
association between the disease status and one marker at a time or, in
other words, the LD between a marker locus and the implicit disease locus
[101, 159]. The disease gene is then predicted to be close to the locus with
the highest association. Composite likelihood methods by Devlin et al. [102]
and Terwilliger [397] consider several markers at a time but do not utilize
any haplotype information.

Service et al. [358] and McPeek and Strahs [272] were among the first
to suggest LD-based haplotype analysis methods. The model by Service et
al. analyzes the LD of the disease to three markers at a time and estimates
the disease locus with respect to the three marker loci. McPeek and Strahs
are closer to the HPM approach: their method is based on an analysis of
the length of haplotype sharing among disease chromosomes. Zhang and
Zhao have extended the method to handle phase-unknown genotype data
[451]. These methods, like most of the previous haplotype-based methods,
are statistically elegant but computationally demanding. They tend to be
exponential in the number of markers and sometimes in the number of
haplotypes.

The implicit assumption of independent haplotypes in the methods
mentioned may be very unrealistic in some populations. Parametric methods
by Lam et al. [239] and Morris et al. [279] and nonparametric TreeDT by
Sevon et al. [360] model the genealogical relationships among the observed
haplotypes.

F-HPM, a variant of HPM, has been suggested independently by Zhang
et al. [452]. It extends HPM to use pedigree data and quantitative traits
by using a quantitative pedigree disequilibrium test proposed by the same
authors.

Linkage analysis is an alternative for LD analysis in gene mapping.
The idea, roughly, is to analyze pedigree data and find out which loci
are inherited with the disease. Due to the lower effective number of
recombinations, linkage analysis is less suitable than LD analysis for
fine mapping. Transmission/disequilibrium tests (TDT) [382] are a well-
established way of testing both association and linkage in a sample where
LD exists between the disease locus and nearby marker loci.

6.6 Discussion

Gene mapping, the problem of locating disease-predisposing genes, is one
of the early steps in many medical genetics studies that ultimately aim at
prevention and cure of human diseases. The completion of the human DNA
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sequence gives a lot of useful information about the genome, in particular
about polymorphisms, whether potentially disease-predisposing or just useful
as markers in gene mapping studies. Availability of the human DNA sequence
does not remove the gene mapping problem, however: we cannot tell from the
DNA sequence alone which gene or polymorphism is associated with which
trait.

From a data mining perspective, the datasets are small. They are,
however, growing fast in dimensionality (number of markers), so mapping
methods need to be scalable in that respect. Discovery of new knowledge
is also an important aspect, even if our discussion has concentrated on
predicting the gene location. Geneticists are interested in the patterns that
show strong correlation with a disease, and they often investigate them
manually, e.g., by constructing possible genealogies to test the plausibility
of a DS gene. Strongly disease-correlated patterns or suitable disjunctions of
them can sometimes also be useful as putative gene tests before the gene is
actually located.

We described haplotype pattern mining, a flexible and generic algorithm
for nonparametric gene mapping. It is based on searching for genetic patterns
that are strongly associated with the trait under study and on mapping the
disease gene to the genetic region with the most evidence for trait association.
HPM incorporates several characteristic components of a typical data mining
task:

• Definition of an application-specific pattern language
• Searching for frequent patterns
• Evaluating the strength of rules of form pattern → trait

In principle, HPM falls into the category of predictive data mining
applications. There is a single variable, the trait, that we attempt to explain
using the marker data and possibly other covariates. However, instead of
having the classification or regression accuracy as the objective, we are more
interested in the patterns that are used for prediction and where they are
located.

Even though datasets are expected to grow as laboratory techniques
evolve, the pattern search step will probably not become an issue with
HPM in the near future. The computational burden mainly results from
the subsequent analysis of the pattern set. With a large set of patterns,
the permutation test procedure may be quite time consuming. We already
saw that with phase-unknown SNP genotype data the execution times were
several hours. Ideas for more efficient handling of patterns, e.g., closed
patterns, could be utilized to speed up the permutation test.

An advantage of HPM is that it is model-free, as it does not require any—
potentially misleading—explicit assumptions about population or mode of
inheritance. Experiments show that HPM tolerates high degrees of missing
data and high phenocopy rates. By introducing HPM-G for phase-unknown
genotype data, we have significantly extended the scope of HPM: it can now
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handle dichotomous or quantitative traits, covariates, SNP and microsatellite
markers, and haplotype or genotype data in any combinations. HPM has a
clear advantage over many parametric methods: as a by-product HPM gives
an explicit list of disease-associated patterns accompanied by a variety of
statistics. This output is found very informative for the geneticists.

Gene mapping is an iterative process: starting with the whole genome,
the search successively narrows down the region potentially harboring the
DS genes. New markers are added and possibly new patients are recruited at
each iteration. The first stage—the genome scan—is customarily conducted
as a family study, using linkage analysis, resulting in candidate regions of 20 to
30 cM. HPM is best suited to the next stage, where the candidate regions are
further reduced to only few centiMorgans. However, our results on simulated
datasets indicate that with a dense enough marker map, HPM could actually
be used for a full genomewide search, at least in populations where LD is
expected to extend over several centiMorgans. This may become feasible in
the near future as genotyping becomes less expensive, and the costs of extra
genotyping may become insignificant compared to the costs and difficulties
associated with recruitment of families for linkage analysis. Experiments
reported in [359] suggest that HPM could be applied to fine mapping as
well—however, proper assessment of the potential for fine mapping is yet to
be done. HPM has been applied in a number of gene mapping studies. The
most recent breakthrough is the identification of an asthma susceptibility
gene.
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Chapter 7
Predicting Protein Folding Pathways

Mohammed J. Zaki, Vinay Nadimpally,
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Summary
A structured folding pathway, which is a time-ordered sequence of
folding events, plays an important role in the protein folding process
and hence in the conformational search. Pathway prediction thus gives
more insight into the folding process and is a valuable guiding tool for
searching the conformation space. In this chapter, we propose a novel
“unfolding” approach for predicting the folding pathway. We apply
graph-based methods on a weighted secondary structure graph of a
protein to predict the sequence of unfolding events. When viewed in
reverse, this process yields the folding pathway. We demonstrate the
success of our approach on several proteins whose pathway is partially
known.

7.1 Introduction

Proteins fold spontaneously and reproducibly (on a time scale of milliseconds)
into complex three-dimensional (3D) globules when placed in an aqueous
solution, and the sequence of amino acids making up a protein appears to
completely determine its three-dimensional structure [16, 249]. At least two
distinct though interrelated tasks can be stated.

1. Structure Prediction Problem: Given a protein amino acid sequence
(i.e., linear structure), determine its three-dimensional folded shape (i.e.,
tertiary structure).

2. Pathway Prediction Problem: Given a protein amino acid sequence and
its three-dimensional structure, determine the time-ordered sequence of
folding events, called the folding pathway, that leads from the linear
structure to the tertiary structure.
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The structure prediction problem is widely acknowledged as an open
problem, and a lot of research in the past has focused on it. The pathway
prediction problem, on the other hand, has received almost no attention.
It is clear that the ability to predict folding pathways can greatly enhance
structure prediction methods. Folding pathway prediction is also interesting
in itself since protein misfolding has been identified as the cause of
several diseases, such as Creutzfeldt-Jacob disease, cystic fibrosis, hereditary
emphysema, and some cancers. In this chapter we focus on the pathway
prediction problem. Note that while there have been considerable attempts to
understand folding intermediates via molecular dynamics and experimental
techniques, to the best of our knowledge ours is one of the first works to
predict folding pathways.

Traditional approaches to protein structure prediction have focused on
detection of evolutionary homology [13], fold recognition [56, 370], and where
those fail, ab initio simulations [372] that generally perform a conformational
search for the lowest energy state [369]. However, the conformational search
space is huge, and, if nature approached the problem using a complete search,
a protein would take millions of years to fold, whereas proteins are observed to
fold in milliseconds. Thus, a structured folding pathway, i.e., a time-ordered
sequence of folding events, must play an important role in this conformational
search [16]. The nature of these events, whether they are restricted to “native
contacts,” i.e., contacts that are retained in the final structure, or whether
they might include nonspecific interactions, such as a general collapse in size
at the very beginning, were left unanswered. Over time, the two main theories
for how proteins fold became known as the “molten globule/hydrophobic
collapse” (invoking nonspecific interactions) and the “framework/nucleation-
condensation” model (restricting pathways to native contacts only).

Strong experimental evidence for pathway-based models of protein folding
has emerged over the years, for example, experiments revealing the structure
of the “unfolded” state in water [276], burst-phase folding intermediates [82],
and the kinetic effects of point mutations (“phi values” [300]). These pathway
models indicate that certain events always occur early in the folding process
and certain others always occur later (Figure 7.1).

Currently, there is no strong evidence that specific nonnative contacts
are required for the folding of any protein [75]. Many simplified models for
folding, such as lattice simulations, tacitly assume that nonnative contacts are
“off pathway” and are not essential to the folding process [227]. Therefore, we
choose to encode the assumption of a “native pathway” into our algorithmic
approaches. This simplifying assumption allows us to define potential folding
pathways based on a known three-dimensional structure. We may further
assume that native contacts are formed only once in any given pathway.

Knowledge of pathways for proteins can give important insight into
the structure of proteins. To make pathway-based approaches to structure
prediction a reality, plausible protein folding pathways need to be predicted.
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Folded stateIntermediate state(s)Unfolded state

Fig. 7.1. Folding pathway.

One approach to enumerate folding pathways is to start with an unfolded
protein and consider the various possibilities for the protein to fold. This
approach is infeasible due to the explosively large number of possibilities
to consider for the pathways. Our novel approach is to start with a folded
protein in its final state and learn how to “unfold” the protein in a time-
ordered sequence of steps to its unfolded state. The reversal of this sequence
could be a plausible protein folding pathway. Our contributions stem from
this basic approach. In this chapter, we explore the role of minimum cuts on
weighted graphs in determining a plausible sequence of unfolding steps.

7.2 Preliminaries

7.2.1 Protein Contact Maps

The 3D conformation of a protein may be compactly represented in a
symmetrical, square, boolean matrix of pairwise interresidue contacts called
the contact map. The contact map of a protein is a particularly useful
representation of protein structure. Two amino acids in a protein that come
into contact with each other form a noncovalent interaction (hydrogen bonds,
hydrophobic effect, and so on). More formally, we say that two amino acids
(or residues) ai and aj in a protein are in contact if the 3D distance δ(ai, aj)
is at most some threshold value t (a common value is t = 7 Å), where
δ(ai, aj) = |ri − rj| and ri and rj are the coordinates of the α-carbon atoms
of amino acids ai and aj (an alternative convention uses β-carbons for all
but the glycines). We define sequence separation as the distance between two
amino acids ai and aj in the amino acid sequence, given as |i − j|. A contact
map for a protein with N residues is an N×N binary matrix C whose element
C(i, j) = 1 if residues i and j are in contact, and C(i, j) = 0 otherwise.

Figure 7.2 shows the contact map for IgG-binding protein from the Protein
Data Bank (PDB), with PDB code 2IGD (61 residues). A contact map
provides useful information about the protein’s secondary structure elements
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Fig. 7.2. 3D structure for protein G (PDB file 2IGD, sequence length 61) and
its contact map. Clusters of contacts indicate secondary structure elements (SSE);
the cluster along the main diagonal is an α-helix, and the clusters parallel and
antiparallel to the diagonal are parallel and antiparallel β-sheets, respectively.
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(SSEs; namely, α-helices and β-strands), and it also captures nonlocal
interactions giving clues to its tertiary structure. For example, clusters of
contacts represent certain secondary structures: α-helices appear as bands
along the main diagonal since they involve contacts between one amino acid
and its four successors; β-sheets are thick bands parallel or antiparallel to the
main diagonal. Moreover, a contact map is rotation and translation invariant,
an important property for data mining. It is also possible to recover the 3D
structure from contact maps [415].

7.2.2 Graphs and Minimum Cuts

An undirected graph G(V, E) is a structure that consists of a set of vertices
V = {v1, v2, · · · , vn} and a set of edges E = {ei = (s, t)|s, t ∈ V }; i.e., each
edge ei is an unordered pair of vertices. A weighted graph is a graph with
an associated weight function W : E → �+ for the edge set. For each edge
ei ∈ E, W (ei) is called the weight of the edge ei.

A path between two vertices s, t ∈ V is an ordered set of vertices
{v1, v2, ..., vk} such that v1 = s, vk = t and for every 1 ≤ j < k,
(vj , vj+1) ∈ E. Two vertices s, t ∈ V are said to be connected in G if there
exists a path between s and t. A connected component K is a maximal set of
vertices K ⊆ V such that for every s, t ∈ K, s and t are connected in G. A
graph is said to be a connected graph if ∀s, t ∈ V , s and t are connected.

Let G = (V, E) be a simple undirected, connected, weighted graph.
An (edge) cut C is a set of edges C ⊆ E, which when removed from the
graph, partitions the graph into two connected components V1 and V2 (with
V1

⋂
V2 = ∅, V1

⋃
V2 = V , V1 	= ∅, V2 	= ∅). An edge crosses the cut

if its endpoints are in different partitions of the cut. The capacity of the
edge cut C is the sum of the weights of edges crossing the cut, given as
W (C) =

∑
e∈C W (e).

A cut C is an s-t cut if vertices s and t are in different partitions of the cut.
A minimum s-t cut is an s-t cut of minimum capacity. A (global) minimum
cut (mincut) is a minimum s-t cut over all pairs of vertices s and t. Note that
mincut need not be unique.

7.2.3 Weighted SSE Graph

A protein can be represented as a weighted secondary structure element graph
(WSG), where the vertices are the SSEs that make up the protein and
the edges denote proximity relationship between the secondary structures.
Furthermore, the edges are weighted by the strength of the interaction
between two SSEs. Following the convention used in protein topology or
TOPS diagrams [389, 427], we use triangles to represent β-strands and circles
to represent α-helices.

To correctly model the secondary structure elements and their interaction,
the edge construction and their weights are determined from the protein’s



132 Data Mining in Bioinformatics

contact map. The edge weights are determined as follows: we determine the
list of SSEs and their sequence positions from the known 3D structure taken
from the Protein Data Bank (PDB).1 Every SSE is a vertex in the WSG. Let
V = {v1, v2, · · · , vn} denote a protein with n SSEs. Each SSE vi has starting
(vi.s) and ending (vi.e) sequence positions, where 1 ≤ vi.s < vi.e ≤ N and
N is the length of the protein.

Let vi and vj be a pair of SSEs. Let the indicator variable b(vi, vj) = 1
if vi and vj are consecutive on the protein backbone chain, else b(vi, vj) = 0.
The number of contacts between the two SSEs in the contact map is given
as κ(vi, vj) =

∑vi.e
i=vi.s

∑vj .e
j=vj .s C(i, j). An edge exists between two SSEs if

there are a positive number of contacts between them, i.e., κ > 0, or if the
two SSEs are linked on the backbone chain. The weight assigned to the edge
(vi, vj) is given as follows: W (vi, vj) = ∆ × b(vi, vj) + κ(vi, vj), where ∆ is
some constant. In our study we set ∆ as the average number of (nonzero)
contacts between SSEs, i.e., ∆ = S

|S| , where S = {κ(vi, vj) > 0 | vi, vj ∈ V }.
This weighting scheme gives higher weights to backbone edges and also to
SSEs with greater bonding between them. The backbone edges are given
higher weight since they represent strong covalent bonds, while the other
contacts represent weaker noncovalent bonds. An example WSG for protein
2IGD is shown in Figure 7.3. The thick lines denote backbone edges. SSEs are
arranged from the N-terminus (start) to the C-terminus (end) and numbered
as given in the PDB file. 2IGD has 5 SSEs, β2β1α1β4β3, arranged from the
N-terminus to the C-terminus.

C−terminus N−terminus

35

1

14

1511

25

α1

β1β4 β3 β2

Fig. 7.3. WSG for protein 2IGD.

7.3 Predicting Folding Pathways

In this section we outline our approach to predicting the folding pathway of
a protein using the idea of “unfolding.” We use a graph representation of a
protein, where a vertex denotes a secondary structure and an edge denotes

1http://www.rcsb.org/pdb/
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the interactions between two SSEs. The edges are weighted by the strength
of the SSE interactions obtained from the protein contact map. The intuition
behind our approach is to break as few contacts as possible and to avoid
splitting an SSE held at both ends. Among several choices, the best option
is to pick one that has the least impact on the remaining part of the protein.
Through a series of minimum cuts on the weighted graph, we predict the
most likely sequence of unfolding events. Reversing the unfolding steps yields
plausible pathways for protein folding. A detailed description of our approach
follows.

7.3.1 Unfolding via Mincuts

The intuition behind the unfolding process stems from the belief that
unfolding occurs by breaking as few contacts as possible. Given a weighted
SSE graph for a protein, a mincut represents the set of edges that partition
the WSG into two components that have the smallest number of contacts
(i.e., bonds) between them. Hence, minimum capacity edge cuts on WSGs
can help us determine the points in the protein where unfolding is likely to
occur.

The problem of determining the mincuts of weighted graphs is a well-
studied problem in graph theory (see [8] for a comprehensive review). We
chose the Stoer-Wagner (SW) [390] deterministic polynomial-time mincut
algorithm since it is very simple and yet is one of the fastest current methods,
running in time O(|V ||E|+|V |2 log |V |). It relies on the following observation:
either the global mincut is an s-t mincut or it is not. In the former case, if we
find the s-t mincut, we are done. In the latter case, it is sufficient to consider
a mincut of G − {s, t}.

The SW algorithm works iteratively by merging vertices until only one
merged vertex remains. In each phase i, SW starts with an arbitrary vertex
Y = {a} and adds the most highly connected vertex z /∈ Y to the current
set Y , given as z = argmaxz{

∑
x∈Y W (z, x)}. This process is repeated until

Y = V . At this stage the cut of the phase, denoted Ci, is calculated as the cut
that separates the vertex added last to Y (i.e., the vertex t) from the rest of
the current graph. At the end of each phase, the two vertices added last to Y ,
say s and t, are merged into a single node st (i.e., the edges connecting them
are removed) and for any x ∈ V, W (x, st) = W (x, s) + W (x, t). The global
mincut is the minimum cut over all phases, given as C = argmaxi{W (Ci)}.

As an example, consider the WSG for 2IGD shown in Figure 7.3. Let’s
assume that the starting vertex is a = α1, i.e., Y = {α1}. The next SSE
to be picked is β1 since it has the highest weight of connection to α1 (thus,
Y = {α1, β1}). Out of the remaining vertices, β2 has the highest weight
of connection to Y (W (β2, Y ) = 36), so Y = {α1, β1, β2}. The last two
vertices to be added to Y are s = β3 and t = β4. At this point phase 1 is
over, and the weight of the phase 1 cut is W (Ci) =

∑
x∈V W (β4, x) = 36.

We now merge β3 and β4 to get a new st node, as shown in Figure 7.4
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(left). We next proceed through three more phases (again assuming that
we start at vertex a = α1), as shown in Figure 7.4. The lowest mincut
weight among all the phases is W (C) = 25, corresponding to the mincut
C = {(β2, β3), (α1, β4)}, which partitions the WSG into two components
V1 = {α1, β1, β2}, and V2 = {β3, β4}.

35

15

1

14

11 15

35

26 41

W(cut)=41

W(cut)=50

W(cut)=25

α1

β1β2β3
β4

α1

β1β2β3
β4

α1

β1β4
β2β3

Fig. 7.4. SW algorithm for mincut of protein 2IGD.

According to our model an unfolding event is a set of edges that form
a mincut in the WSG G = (V, E) for a protein. Our algorithm to predict
the unfolding event is called UNFOLD, and it works as follows. First, a
mincut C for the initial WSG is determined; ties are broken arbitrarily.
This gives the first event in the unfolding process. The edges that form
this cut are deleted from the WSG, yielding two new connected subgraphs
G1 = (V1, E1) and G2 = (V2, E2), where V1 and V2 are the two partitions
resulting from the mincut C and Ei = {(u, v) ∈ E|u, v ∈ Vi}. We recursively
process each subgraph to yield a sequence of mincuts corresponding to the
unfolding events. This sequence when reversed produces our prediction for
the folding pathway for the given protein. Figure 7.5 shows the pseudocode
for the complete UNFOLD algorithm to determine the unfolding events for
a given protein.

As an example of how UNFOLD works, consider again protein 2IGD. We
determined that the first unfolding event (mincut) partitions its WSG into
two groups of SSEs V1 = {β2, β1, α1} and V2 = {β4, β3}. After recursive
processing, UNFOLD produces a sequence of mincuts that can easily be
visualized as a tree shown in Figure 7.6. Here each node represents a set
of vertices that make up a graph obtained in the recursive application of
UNFOLD, and the children of a node are the partitions resulting from the
mincut, whose value appears in brackets next to the node. For example, the
node β2β1α1 is partitioned into β2β1 and α1, which has a mincut value of
25. If we proceed from the leaf nodes of the tree to the root, we obtain
the predicted folding pathway of 2IGD. We find that SSEs β2 and β1 fold
to form an antiparallel β-sheet. Simultaneously, SSEs β3 and β4 may also
form a parallel β-sheet. SSE α1 then forms a β2α1β1 arrangement, and then
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//G is a graph with weight function W
UNFOLD (G = (V, E), W : E → �+):

C = SW-MinCut(G,W);
G1 = (V1, E1); G2 = (V2, E2);
if (|V1| > 1) UNFOLD(G1, W );
if (|V2| > 1) UNFOLD(G2, W );

SW-MinCut(G = (V, E), W : E → �+):
while (|V | > 1)

W (Ci) = MinCutPhase(G,W);
return C = argmini{W (Ci)};

MinCutPhase(G = (V, E), W : E → �+):
Y = {some a ∈ V };
while (|Y | 	= |V | − 2)

Y = Y ∪ {z = argmaxz{∑
x∈Y W (z, x)}};

Shrink G by merging s, t ∈ G − Y ;
return cut-of-the-phase (from t);

Fig. 7.5. UNFOLD algorithm.

β2 β1

α1 β4 β3β2−β1

β2−β1−α1

β2−β1−α1−β4−β3

β4−β3

Fig. 7.6. UNFOLD 2IGD.

the whole protein comes together by forming a parallel β-sheet between β2
and β3. We should be careful not to impose a strict linear timeline on the
unfolding events predicted by UNFOLD; rather, allowance should be made
for several folding events to take place simultaneously. However, there may
be intermediate stages that must happen before higher order folding can take
place. We show that our approach is particularly suited to provide insights
into such intermediate folding states.



136 Data Mining in Bioinformatics

1

N

1421 1513

4

Weighted SSE graph

9

129
9

2 14

1
15

17
2

3

9

41 9C

26

β1β7 β4

α4

β8 β6 β5

α1 α2

β3
19

β2

3

α3

Fig. 7.7. Dihydrofolate reductase (4DFR): weight SSE graph.

7.3.2 Detailed Example: Dihydrofolate Reductase (4DFR)

Although no one has determined the precise order of appearance of secondary
structures for any protein, evidence supports intermediate stages in the
pathway for several well-studied proteins, including specifically for the
protein dihydrofolate reductase (PDB 4DFR; 159 residues), a two-domain
α/β enzyme that maintains pools of tetrahydrofolate used in nucleotide
metabolism [78, 173, 202].

Experimental data indicate that the adenine-binding domain, which
encompasses the two tryptophans Trp-47 and Trp-74, is folded and is an
intermediate essential in the folding of 4DFR, and the event of folding the
adenine-binding domain happens early in the folding of 4DFR [173]. Figures
7.7 and 7.8 show the WSG, unfolding sequence, and a series of intermediate
stages in the folding pathway of protein 4DFR. Trp-47 and Trp-74 lie in SSEs
α2 and β1, respectively. According to the mincut-based UNFOLD algorithm,
the vertex set {β2, α2, β3, β1} lies on the folding pathway, in agreement with
the experimental results!

We can see from Figure 7.7 that 4DFR has four α-helices and eight β-
strands. The WSG shows the interactions weights among the different SSEs
(the bold lines indicate the backbone). Applying UNFOLD to 4DFR yields
the sequence of cuts shown. For clarity, the unfolding sequence tree has been
stopped when there are no more than three SSEs in any given node. The
remaining illustrations show some selected intermediate stages on the folding
pathway by reversing the unfolding sequence.

We find that SSE groups β2α2β3 and β6, β8, β7 are among the first to fold
(Figure 7.9), suggesting that they might be the folding initiation sites. Next
β1 joins β2α2β3, in agreement with the experimental results [78], as shown
in Figure 7.10; the Trp-47 and Trp-74 interaction is also shown, and the
other group now becomes β5, β6, β8, β7. The final native structure including
α3β4α4 and α1 is shown in Figure 7.11. We again underscore that the results
should not be taken to imply a strict folding timeline, but rather as a way
to understand major events that are mandatory in the folding pathway. One
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Unfolding sequence

α4

β4

α3
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β5

β3−α2−β2−β1
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β3−α2−β2−β1−α3−β4−α4
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β5−β6−β8−β7

β3−α2−β2
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α1

Fig. 7.8. Dihydrofolate reductase (4DFR): unfolding sequence.

α2

β2 β3
β6

β7 β8

Fig. 7.9. Dihydrofolate reductase (4DFR): early stages in the folding pathway.

such experimentally verified case is the {β2, α2, β3, β1} group that is known
to fold early, and our approach was able to predict that.

7.4 Pathways for Other Proteins

To establish the utility of our methodology we predict the folding pathway for
several proteins for which there are known intermediate stages in the folding
pathway.
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β1

Fig. 7.10. Dihydrofolate reductase (4DFR): intermediate stages in the folding
pathway.

Bovine pancreatic trypsin inhibitor (PDB 6PTI; 58 residues) is a small
protein containing two α-helices and two β-strands [217]. It is known that
the unfolding pathway of this protein involves the loss of the helix structure
followed by the beta structure. Applying UNFOLD to 6PTI, we found that
indeed β2β3 remain together until the end.

Chymotrypsin inhibitor 2 (PDB 2CI2; 83 residues) is also a small
protein, with one helix and four strands arranged in sequence as follows:
β1α1β4β3β2. Previous experimental and simulation studies have suggested an
early displacement of β1 and a key event in the disruption of the hydrophobic
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Fig. 7.11. Dihydrofolate reductase (4DFR): final stages and native structure of
the folding pathway.

core formed primarily by α1 and the strands β3 and β4 [242]. UNFOLD
predicts that β1 is the first to go, while β3β4 remain intact until the end.

The activation domain of human procarboxypeptidase A2 (PDB 1O6X)
has 81 residues, with two α and three β strands arranged as follows:
β2α1β1α2β3. The folding nucleus of 1O6X is made by packing α2 with
β2β1 [417]. We found that the unfolding sequence indeed retains β2β1α2 and
then finally β2β1.

The pathway of cell cycle protein p13suc1 (PDB 1SCE; 112 residues)
shows the stability of β2β4 interaction even though β4 is the strand involved
in domain swapping [11]. 1SCE has four domains with seven SSEs (three α
and four β). The β4C of domain C interacts with the β2 of domain A, and
vice versa (the same is true for domains B and D). We found that β1β2β4C

is the last to unfold.
β-Lactoglobulin (PDB 1CJ5; 162 residues) contains ten strands and three

helices. Beta strands F, G and H are formed immediately, once the refolding
starts [238], and were thus identified as the folding core of 1CJ5. In the
predicted unfolding sequence obtained for 1DV9, we found that the SSEs
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β8, β9, β10 corresponding to the F, G, and H beta strands remain together
until the last stages of unfolding.

Interleukin-1β (PDB 1I1B; 153 residues) is an all-β protein with twelve
β-strands. Experiments indicate that strands β6β7β8 are well folded in the
intermediate state and β4β5 are partially formed [78]. We found β4β5 and
β6β7 to be among the last unfolding units, including β8β9.

Myoglobin (PDB 1MBC; from sperm whale; 153 residues) and
leghemoglobin (PDB 1BIN; from soybean; 143 residues), both belonging to
the globin family of heme binding proteins, share a rather low sequence
similarity but highly similar structure. Both are all-α proteins with eight
helices, denoted α1(A)α2(B)α3(C)α4(D)α5(E)α6(F )α7(G)α8(H). In [298],
the researchers observed that the main similarity of their folding pathways
is in the stabilization of the G and H helices in the burst phase of folding
intermediates. However, the details of the folding pathways are different. In
1MBC intermediate additional stabilizing interactions come from helices A
and B, while in 1BIN they come from part of the E helix. Running UNFOLD
on 1MBC indeed finds that α7(G)α8(H) remain together until the very last.
For 1BIN we found a pathway passing through α1(A)α2(B)α7(G)α8(H).
UNFOLD was thus able to detect the similarity in the folding pathways but
not the details. For that we ran UNFOLD many times with different contact
thresholds, and we enumerated all exact mincuts and those mincuts within
some ε of a mincut. From these different pathways we counted the number of
times a given group of SSEs appears together. We found that α5(E) showed
a tendency to interact with α8(H) in 1BIN but never for 1MBC. This seems
to hint at the results from experiments [298].

Protein acylphosphatase (PDB 2ACY; 98 residues), with two α and five β
SSEs (β2α1β4β3α2β1β5), displays a transition state ensemble with a marked
tendency for the β-sheets to be present, particularly β3 and β4, and while
α2 is present, it is highly disordered relative to rest of the structure [416].
UNFOLD finds that β2β1 remain intact until the end of unfolding, passing
through a stage that also includes β3, β4, α2. To gain further insight, we ran
UNFOLD many times (as described for 1MBC and 1BIN), and we found that
there was a marked tendency for β3β4 to be together in addition to β2β1, and
β3 also interacted with α2.

The twitchin immunoglobulin superfamily domain protein (PDB 1WIT;
93 residues) has a β-sandwich consisting of nine β-strands and one very
small helix. The folding nucleus consists of residues in the structural core
β3β4β7β9β10 centered on β3 and β9 on opposite sheets [77]. We found in many
runs of UNFOLD that this group does indeed have a very high tendency to
remain intact.
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7.5 Conclusions

In this chapter we developed automated techniques to predict protein folding
pathways. We construct a weighted SSE graph for a protein where each vertex
is an SSE and each edge represents the strength of contacts between two SSEs.
We used a repeated mincut approach (via the UNFOLD algorithm) on the
WSG graph to discover strongly interrelated groups of SSEs, and we then
predicted an (approximate) order of appearance of SSEs along the folding
pathway.

Currently we consider interactions only among the α-helices and β-
strands. In the future we also plan to incorporate the loop regions in the WSG
and see what effect this action has on the folding pathway. Furthermore, we
plan to test our folding pathways on the entire collection of proteins in the
PDB. We would like to study different proteins from the same family and
see if our method predicts consistent pathways; both similarities and dis-
similarities may be of interest. We also plan to make our software available
online so that other researchers can try the UNFOLD predictions before
embarking on time-consuming experiments and simulations.

One limitation of the current approach is that the UNFOLD algorithm
(arbitrarily) picks only one mincut out of perhaps several mincuts that have
the same capacity. It would be interesting to enumerate all possible mincuts
recursively and construct all the possible folding pathways. The appearance
of some mincuts on several pathways might provide stronger evidence of
intermediate states.

Another limitation is that all native interactions are considered
energetically equivalent, and thus large stabilizing interactions are not
differentiated. Nevertheless the simplified model is based on topology and it
helps investigate how much of the folding mechanism can be inferred from the
native structure alone, without worrying about energetic difference. Further
justification for our model comes from the fact that many independent lines of
investigation indicate that protein folding rates and mechanisms are largely
determined by the topology of the protein [27], which is captured by our
WSG model.
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Chapter 8
Data Mining Methods for a Systematics
of Protein Subcellular Location

Kai Huang and Robert F. Murphy

Summary
Proteomics, the comprehensive and systematic study of the properties
of all expressed proteins, has become a major research area in
computational biology and bioinformatics. Among these properties,
knowledge of the specific subcellular structures in which a protein is
located is perhaps the most critical to a complete understanding of the
protein’s roles and functions. Subcellular location is most commonly
determined via fluorescence microscopy, an optical method relying on
target-specific fluorescent probes. The images that result are routinely
analyzed by visual inspection. However, visual inspection may lead
to ambiguous, inconsistent, and even inaccurate conclusions about
subcellular location. We describe in this chapter an automatic and
accurate system that can distinguish all major protein subcellular
location patterns. This system employs numerous informative features
extracted from the fluorescence microscope images. By selecting the
most discriminative features from the entire feature set and recruiting
various state-of-the-art classifiers, the system is able to outperform
human experts in distinguishing protein patterns. The discriminative
features can also be used for routine statistical analyses, such as
selecting the most typical image from an image set and objectively
comparing two image sets. The system can also be applied to cluster
images from randomly tagged genes into statistically indistinguishable
groups. These approaches coupled with high-throughput imaging
instruments represent a promising approach for the new discipline of
location proteomics.
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8.1 Introduction

8.1.1 Protein Subcellular Location

The life sciences have entered the post-genome era where the focus of
biological research has shifted from genome sequences to protein functionality.
With whole-genome drafts of mouse and human in hand, scientists are putting
more and more effort into obtaining information about the entire proteome
in a given cell type. The properties of a protein include its amino acid
sequences, its expression levels under various developmental stages and in
different tissues, its 3D structure and active sites, its functional and structural
binding partners, and its subcellular location. Protein subcellular location is
important for understanding protein function inside the cell. For example,
the observation that the product of a gene is localized in mitochondria
will support the hypothesis that this protein or gene is involved in energy
metabolism. Proteins localized in the cytoskeleton are probably involved in
intracellular trafficking and support. The context of protein functionality is
well represented by protein subcellular location.

Proteins have various subcellular location patterns [250]. One major
category of proteins is synthesized on free ribosomes in the cytoplasm.
Soluble proteins remain in the cytoplasm after their synthesis and function
as small factories catalyzing cellular metabolites. Other proteins that have
a target signal in their sequences are directed to their target organelle
(such as mitochondria) via posttranslational transport through the organelle
membrane. Nuclear proteins are transferred through pores on the nuclear
envelope to the nucleus and mostly function as regulators. The second major
category of proteins is synthesized on endoplasmic reticulum(ER)-associated
ribosomes and passes through the reticuloendothelial system, consisting
of the ER and the Golgi apparatus. Some stay in either the ER or the
Golgi apparatus, and the others are further directed by targeting sequences
to other organelles such as endosomes or lysosomes. Protein subcellular
location patterns often result from steady states or limit cycles and can also
change under specific conditions. Proteins are continuously being synthesized,
localized, and finally degraded. This process forms the distribution of a
protein inside the cell. In addition, intracellular signal transduction pathways
often involve translocation of either specific signal or cargo proteins among
compartments and intercellular signal transduction employs endocytosis and
exocytosis of certain signal proteins. The static and dynamic properties
of protein subcellular location patterns provide a significant challenge for
machine learning and data mining tools.

8.1.2 Experimental Methods to Determine
Protein Subcellular Location

Several experimental methods have been developed to determine protein
subcellular location, such as electron microscopy, subcellular fractionation,
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and fluorescence microscopy. Although electron microscopy provides the
finest resolution, sample preparation is slow and it cannot be used for living
cells. Subcellular fractionation provides only coarse separation of proteins
among major cellular compartments. The most common and powerful method
for analyzing the distributions of specific proteins or molecules is fluorescence
microscopy. Fluorescence microscopy relies on light emitted by fluorescent
dyes that are coupled to target proteins or molecules. These dyes are
small molecules with special fluorescent characteristics so that they can
emit fluorescence within certain wavelengths given specific illumination. Two
filters are needed in fluorescence microscopy, namely, the excitation filter and
the emission filter. An illumination light is first passed through the excitation
filter so that only specific wavelengths that can excite the fluorescent dye are
allowed to reach the specimen. The emission filter is then used to filter the
emission spectrum to clean out any excitation wavelengths and only allow
fluorescence from the dye to pass through.

How to make the target protein fluorescent is the key part of fluorescence
microscopy. Two methods are often used to target fluorescent dyes to proteins
or other macromolecules. The first is immunofluorescence, which employs
antibodies as intermediates that can bind to the target protein specifically.
Cells are first fixed and permeabilized so that antibodies conjugated with
fluorescent dyes can enter the cell and bind to the target protein. Two
antibodies are often used in immunofluorescence. A primary antibody binds
to the target protein specifically and then several secondary antibodies that
are conjugated with a fluorescent dye bind to the primary antibody to increase
the labeling efficiency.

Different dyes can bind to different secondary antibodies and therefore
to different primary antibodies and target proteins. This principle not only
applies to antibodies but also applies to drugs that can bind to specific
proteins. Fluorescent dyes can be conjugated with drugs that bind to a
target protein; e.g., dye-coupled phalloidin can be used to label the actin
cytoskeleton. Immunofluorescence requires fixing and permeabilizing cells
and is therefore not suitable for live cell imaging. The other method is gene
tagging, which attaches a DNA sequence coding a fluorescent protein to a
gene of interest. The resulting gene will be expressed as a chimeric protein
with intrinsic fluorescence. The tagging can be directed to a specific gene or
done randomly. Random tagging is good for labeling unknown proteins and
extensive random tagging along with fluorescence microscopy can be used to
generate a database of fluorescence microscope images of all or many proteins
expressed in a given cell type [200, 201, 233, 334, 396]. We have coined
the term location proteomics [73] to describe the automated, proteomewide
analysis of protein subcellular location.

Different microscope systems are available for fluorescence microscopy
[388]. Low-cost widefield microscope systems collect fluorescence emitted
from the whole depth of the specimen with fast acquisition. Deconvolution
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is required to remove out-of-focus fluorescence from the slice of
interest. Confocal scanning microscopes automatically remove out-of-focus
fluorescence using a pinhole on the detector. Image acquisition speed is
limited by scan speed. A variation on this is the spinning disk confocal
microscope, which employs a rotating array of pinholes to facilitate fast
focusing and image acquisition. Each microscope system has its own
advantages, and the choice of which to use is determined by the application.

In an unpolarized cell, which is relatively flat relative to the depth of field
of a microscope objective, a 2D image of a labeled protein usually captures
sufficient information about its subcellular location pattern. However, a 2D
slice can be misleading in a polarized cell, where proteins show quite different
distributions from one cell surface to the other. Three-dimensional images are
therefore more useful for analyzing protein distribution patterns in polarized
cells.

Current fluorescence microscope systems allow simultaneous imaging of
multiple fluorescence channels in both 2D and 3D. Different labels can be used
simultaneously during the imaging, which provides contrast information to
some landmark such as the cell nucleus. Images of each fluorescent probe are
normally collected separately using optical filters (e.g., resulting in a gray-
scale image of the amount of fluorescence of probe 1 and a gray-scale image
of the amount of fluorescence of probe 2). For display, these separate images
are frequently combined to create a false-color image in which, for example,
the gray-scale image of one probe is copied into the green channel of an
output image and the gray-scale image of a second probe is copied into the
red channel.

8.1.3 Overview of Data Mining Methods for Predicting
Protein Subcellular Location

Computational approaches to protein location have taken two forms. The
first is prediction of location primarily from sequence including prediction
using an N-terminal signal peptide [418], functional domain compositions
[76, 280], amino acid composition [185, 293], and evidence combined from
both sequences and expression levels [106]. The most significant problem with
this approach is the currently limited knowledge of the spectrum of possible
location patterns. Supervised prediction schemes are limited to assigning new
proteins to existing location classes based on their sequence. The situation is
analogous to that in structural proteomics a decade or more ago before the
major protein fold classes were identified.

The second, complementary approach is automated determination of
protein location directly from experimental data. As discussed in section
8.1.2, fluorescence microscopy is the most powerful method for determining
protein location, and we [44, 45, 46, 288, 414] and others [90] have described
systems for classifying subcellular patterns in fluorescence microscope images.
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This chapter focuses on data mining in protein fluorescence microscope
images. The image acquisition process is described first. We then introduce
subcellular location features (SLFs) computed from images that can capture
the characteristics of different protein subcellular location patterns. SLFs
are robust for different cell shapes and orientations and are adaptable across
various cell types, sample preparations, fluorescence microscopy methods, and
image resolutions. Third, work on classical supervised learning of location
patterns using SLF is described. The use of various data mining tools
such as feature reduction and classifier ensembles to improve classification
performance is presented. Systematic statistical analysis comparing different
protein subcellular location patterns in image sets can be simplified by
carrying out distance computation and statistical tests on the SLF. Finally,
we describe the use of unsupervised learning methods to group all proteins
expressed in a given cell type into clusters with statistically indistinguishable
patterns. The identification of informative features using supervised learning
on known classes represents a useful (and we would say required) step in
validating the use of these features for exploratory data mining. The result of
applying these methods proteomewide is a systematics for protein patterns
that is the goal of location proteomics.

8.2 Methods

8.2.1 Image Acquisition

Cell biologists evaluating subcellular location patterns may view anywhere
from a few to dozens of cells under a microscope, but the number of images
saved is usually limited to a few examples for presentation and publication.
In contrast, development and evaluation of methods for location proteomics
have required the collection of a sufficient number of digital images to
permit statistically meaningful results to be obtained. Our group has used
four collections of images for this purpose, which are described here and
summarized in Table 8.1. Links for downloading the image collections can be
found at http://murphylab.web.cmu.edu/data.

2D Protein Fluorescence Microscope Image Collections

2D CHO. For the initial demonstration of the feasibility of automating
subcellular pattern classification, we collected four sets of fluorescence
microscope images of Chinese hamster ovary (CHO) cells. In one set, nuclear
DNA was labeled with Hoechst 33258; in the other three sets, a specific
protein was labeled by immunofluorescence[45]. Antibodies against the Golgi
protein giantin, the yeast nucleolar protein NOP4, the lysosomal protein
LAMP2, and the microtubule protein tubulin were used. The number of
images collected for each protein ranged from 33 to 97. For each field (which
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Table 8.1. Summary of the image collections discussed in this chapter.

Data No. of Microscopy Objective Pixel size No. of Ref.
set classes method in original colors per

field (µm) image
2D 5 Deconvolution 100X 0.23 1 [45]

CHO
2D 10 Deconvolution 100X 0.23 2 [46]

HeLa
3D 11 Confocal 100X 0.0488 3 [414]

HeLa scanning
3D 46 Spinning disk 60X 0.11 1 [73]
3T3 confocal

were chosen to include primarily one cell), three optical slices separated by
0.23 micron in focus position were taken. Nearest-neighbor deconvolution
was used to remove out-of-focus fluorescence from the central slice [4].
The resulting images were cropped to remove any partial cells along the
edge so that only a single-cell region remained. The most common pixel
intensity in an input image was subtracted from all pixels in the image
to remove the background fluorescence (the most common pixel value was
used as background based on the assumptions that cells typically occupy
less than half of the total area of the image and that variation in pixel
intensity is greater in the cell than in the background). The images were
then thresholded so that all pixels below four times the background value
were set to zero. Figure 8.1 shows example processed images taken from the
2D CHO collection.

Fig. 8.1. Example images from the 5-class CHO cell image collection depicting
five major subcellular location patterns: (A) giantin, (B) LAMP2, (C) NOP4, (D)
tubulin, and (E) DNA. From reference [45].
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2D HeLa. For a more complete testing of the capabilities and limits
of automated subcellular location analysis, a similar immunofluorescence
approach was used to acquire a larger image collection of the human cell line
HeLa. This line was used because more antibodies are available for human
than for hamster cells and because the cells are larger and better spread than
CHO cells. Nine different proteins located in major subcellular organelles
were labeled, and DNA was labeled in each sample using a distinguishable
fluorescent probe. The proteins included a protein located in the endoplasmic
reticulum membrane, the Golgi proteins giantin and Gpp130, a protein on the
mitochondria outer membrane, the nucleolar protein nucleolin, the lysosomal
protein LAMP2, transferrin receptor (primarily localized in endosomes), and
the cytoskeletal proteins beta-tubulin and f-actin. The two Golgi proteins
were included to test the ability of the automated methods to distinguish
similar patterns. The number of images per protein ranged from 73 to 98. The
same fluorescence microscope and nearest neighbor deconvolution method
used for the CHO set was applied to the HeLa images. The same preprocessing
steps of cropping, background subtraction, and thresholding were applied,
but an automated threshold selection method [331] was used rather than the
fixed multiple method used previously. A separate DNA class was created by
making synthetic two color images in which both colors contained the same
DNA image (the DNA images collected in parallel with giantin were used).
Figure 8.2 shows example processed images taken from the 2D HeLa image
collection.

3D Protein Fluorescence Microscope Image Collections

3D HeLa. To acquire the 3D image collection, we used a three-laser confocal
laser scanning microscope that is able to remove out-of-focus fluorescence
while taking an image. The same nine proteins used in the 2D HeLa set
were imaged. For each protein, parallel images of DNA and total protein
were obtained using additional fluorescent probes so that three-color images
were obtained. Every 3D image in the set consisted of 14 to 24 2D slices
and the dimensions of each voxel in the resulting 3D stack was 0.049 ×
0.049 × 0.2 microns. Between 50 and 58 3D images were collected for each
protein. Automatic cell segmentation was performed by employing a seeded
watershed algorithm on the total protein channel using the centers of the
nuclei (calculated using the DNA channel) as seeds. After segmentation, the
images were further processed by background subtraction and automated
thresholding. Figure 8.3 shows an example image taken from the 3D HeLa
image collection. A synthetic DNA class was created by copying the DNA
image, and a synthetic “cytoplasmic” class was created by copying the total
protein image.
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Fig. 8.2. Example images from 2D HeLa cell image collection depicting ten major
subcellular location patterns. The target proteins include (A) an ER protein, (B)
the Golgi proteins giantin, (C) Gpp130, (D) a lysosomal protein LAMP2, (E) a
mitochondrial protein, (F) a nucleolar protein nucleolin, (G) filamentous actin,
(H) an endosomal protein transferrin receptor, (J) tubulin, and (K) DNA. Scale
bar=10µm. From reference [46].

Fig. 8.3. An example image from the 3D HeLa cell image collection. Each image
comprises three channels labeling (A) a specific target protein (tubulin), (B) total
DNA, and (C) total protein. Summed projections onto the X–Y and X–Z planes
are shown. From reference [414].
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3D 3T3. As mentioned previously, random tagging can provide an image
library of all proteins expressed in a cell type. For example, CD tagging [200]
introduces a CD cassette into the genome through a genetically engineered
retroviral vector. The coding sequence of a green fluorescence protein (GFP)
is enclosed in the CD cassette and a GFP-tagged fusion protein will be
expressed if (and only if) the CD cassette is inserted into an intron of a
gene. Cell lines expressing properly tagged genes can be isolated by selection
for GFP expression. The sequence of the tagged gene can be determined later
and identified by sequence homology search. We have used a library of CD-
tagged lines derived from 3T3 cells [201] to build a collection of single-color
3D images for 46 tagged clones [73]. Between 16 and 33 3D images were
collected for each clone, where each voxel represents 0.11×0.11×0.5 microns
in space. Since no DNA or total protein images were available to permit
automated cropping, manual cropping was conducted followed by background
subtraction and thresholding. Figure 8.4 shows example processed images
taken from the 3D 3T3 image collection.

Fig. 8.4. Example 3D images from the 3T3 image collection. Summed projections
onto the X–Y and X–Z planes are shown for proteins representing six of the major
subcellular patterns found by cluster analysis [73].

8.2.2 Subcellular Location Features (SLFs)

Traditional image classification in computer vision frequently involves
knowledge representation of an image by features such as color, frequency,
and texture. These generalized features have been successfully used in
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classification of natural scenes, human faces, and so on. Complex image
preprocessing, however, is employed in these problems so that variances
in illuminations, translations, and orientations are removed and all input
images are normalized. Therefore, no specific requirement is imposed on
these generalized features. Cells are more variable than objects in natural
scenes or faces. They can have widely varying morphologies, and the images
taken for a specific protein can be affected by sample preparation and
fluorescence microscopy methods. No image-processing methods for removing
these sources of variation have been described. As a result, the features that
are suitable for describing protein fluorescence microscope images should be
invariant to translation and rotation of the cell in the field and be robust
to different cell shapes, cell types, and fluorescence microscopy methods.
The design of the subcellular location features (SLFs) was based on these
constraints, although some generalized features such as wavelets are also
considered. These features are designed for single-cell images, although some
of them can also be adapted to multicell images.

Features for 2D Images

Zernike moment features. Zernike moment features [220], defined on the
unit circle, describe the similarity of an input image to a set of Zernike
polynomials. They were first used for analyzing subcellular patterns in our
initial work with the 2D CHO images [44, 45]. We use a transformation that
maps a rectangular image f(x, y) to a unit circle with a user-supplied cell
radius r centered on the center of fluorescence (cx, cy) of the cell and removes
pixels outside that circle:

f ′(x′, y′) = f(x, y)w(x′, y′), x′ =
x − Cx

r
, y′ =

y − Cy

r
, (8.1)

where

Cx =

∑
x,y xf(x, y)∑
x,y f(x, y)

, Cy =

∑
x,y yf(x, y)∑
x,y f(x, y)

(8.2)

and w(x′, y′) is a unit circle mask function:

w(x′, y′) =
{

1, p2 + q2 ≤ 1
0, otherwise (8.3)

where p = x′ and q = y′.
The Zernike moment, Znl, is calculated as a dot product between the

normalized image and a Zernike polynomial with degree n and angular
dependence l,
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Znl =
n + 1

π

∑
x′

∑
y′

V ∗
nl(x

′, y′)f ′(x′, y′), (8.4)

where V ∗
nl is the complex conjugate of Vnl,

Vnl(x′, y′) =

n−1
2∑

m=0

(−1)m (n − m)!
m!(n−2m+l

2 )!(n−2m−l
2 )!

(p2 + q2)
n
2 −mejlθ, (8.5)

and p = x′, q = y′, 0 ≤ l ≤ n, n − l is even, θ = tan−1( y′

x′ ), and j =
√

−1.

Fig. 8.5. Example Zernike polynomials (Z80 and Z84).

Figure 8.5 shows examples of two of the Zernike polynomials. The image
transformation to a unit circle makes the moments invariant to translations
and scales, and features invariant to orientation of the cell can then be
obtained by calculating magnitudes. We use |Znl| for 0 ≤ n ≤ 12, resulting
in 49 Zernike moment features.

Haralick texture features. Texture features measure repetitive local
patterns in an image. Just as some characteristics of biomolecular sequences
can be represented by treating them as a Markov chain in which the
probability of a particular sequence element depends only on the prior
sequence element, so images can be simplistically represented using a gray-
level cooccurrence matrix. This is an Ng × Ng matrix (where Ng is the
number of gray levels in the image) where each element p(i, j) represents the
probability of observing a pixel with gray level i occurring adjacent to a pixel
with gray level j. Haralick [169] defined 14 features that can be computed
from the cooccurrence matrix to describe image texture. Table 8.2 shows the
13 of these features that we have used in our work.

Adjacency can be defined in horizontal, vertical, and two diagonal
directions in a 2D image. To achieve rotational invariance, texture features
can be calculated from separate cooccurrence matrices and then averaged
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Table 8.2. Definitions of 13 Haralick texture features that can be computed from
a gray-level cooccurrence matrix [169], p(i, j).

Feature name Definition
1. Angular second moment

∑
i

∑
j p(i, j)2

2. Contrast
∑Ng−1

n=0 n2{
∑Ng

i=1
∑Ng

j=1p(i, j)}, |i − j| = n

3. Correlation
∑

i
∑

j(ij)p(i,j)−µxµy

σxσy
,

where µx, µy, σx, and σy are the means
and standard deviations of the marginal
probability density functions px and py

4. Sum of squares: variance
∑

i

∑
j(i − µ)2p(i, j)

5. Inverse difference moment
∑

i

∑
j

1
1+(i−j)2

p(i, j)

6. Sum average
∑2Ng

i=2 ipx+y(i),
where x and y are the coordinates of an
element in the cooccurrence matrix and
px+y(i) is the probability summing to
x + y

7. Sum variance
∑2Ng

i=2 (i − f8)2px+y(i)
8. Sum entropy −

∑2Ng
i=2 px+y(i)log{px+y(i)}

9. Entropy −
∑

i

∑
j p(i, j)log(p(i, j))

10. Difference variance
∑Ng−1

i=0 i2px−y(i)
11. Difference entropy −

∑Ng−1
i=0 px−y(i)log{px−y(i)}

12. Info. measure of correlation 1 HXY −HXY 1
max{HX ,HY } ,
where HXY = −

∑
i

∑
j p(i, j)log(p(i, j)),

HX and HY are the entropies of px and py,
HXY 1 = −

∑
i

∑
j p(i, j)log{px(i)py(j)}

HXY 2 = −
∑

i

∑
j px(i)py(j)log{px(i)py(j)}

13. Info. measure of correlation 2 (1 − exp[−2(HXY 2 − HXY )])
1
2

across the four directions. These features were first used to describe
subcellular location patterns in our work on the 2D CHO images, both by
themselves and in combination with Zernike moment features [45].

Since the cooccurrence matrix captures second-order image statistics, the
Haralick texture features are intrinsically invariant to translations (within
digitization error). However, the features are sensitive to the number of gray
levels and the pixel size in the image. To find the largest pixel size and
the optimal number of gray levels acceptable for protein location analysis,
we conducted a series of experiments involving resampling and requantizing
gray-level images from the 2D HeLa image collection [289]. The result showed
that an image with 1.15 microns/pixel and 256 gray levels generates the most
discriminative Haralick features. Since most fluorescence microscopes give
higher resolution than 1.15 microns/pixel and fluorescence intensity readings
greater than 256, we have proposed using these settings to calculate texture
features robust to variation in image acquisition conditions [289]. To do this,
input images can be resampled to 1.15 microns/pixel and binned in 256 gray
levels before building the cooccurrence matrix.

SLFs. To permit unambiguous references to specific feature combinations, we
have created a nomenclature for feature sets and individual features [46]. The
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convention is for feature sets to be referred to by SLF (subcellular location
feature) followed by a number (e.g., SLF1) and for individual features to
be referred to by the set number followed by the index of that feature
within that set (e.g., SLF1.7). Features used in new feature sets can be
defined recursively until their original definition is reached (e.g., SLF5.1 is
the same as SLF1.3). SLF1 was the first feature set designed specifically
for describing protein subcellular patterns in fluorescence microscope images
[46]. The features in SLF1 were based on the image properties that a human
expert pays attention to when classifying protein patterns. For instance, the
pattern for an endosomal protein such as transferrin receptor (see Figure 8.2)
shows more fluorescence objects than other patterns, making the number of
fluorescence objects in the image a good feature to distinguish endosomes
from other location patterns. Similarly, other morphological and geometric
features such as object size and the average distance between objects and
the center of fluorescence of the image are used in SLF1 as well as features
derived from edge finding and the convex hull of the image.

When a parallel DNA image is available, additional features can be
calculated, describing the distance between objects and the center of
fluorescence of DNA and the overlap between the protein fluorescence and the
DNA fluorescence. The six DNA features, along with the 16 features in SLF1,
form feature set SLF2. Feature set SLF3 was defined as a combination of
SLF1, Zernike moment features, and Haralick texture features and feature set
SLF4 as a combination of SLF2, Zernike, and Haralick [46]. As improvements
and additions are made, new sets have been defined. SLF7 starts from SLF3,
incorporates the intensity scale- and pixel size-normalized Haralick features
described, and includes six new features measuring object skeletons and
nonobject fluorescence [289]. Table 8.3 gives brief descriptions of each of the
features. This set is appropriate for single-color protein images, and SLF7 can
be combined with the six DNA features in SLF2 (SLF2.17–22) to describe
protein images that have a parallel DNA image.

Wavelet features. Wavelets decompose an input image locally by many
basis functions with different scales. They have been successfully used in
image denoising, compression, and classification [67]. Recently we have
explored the use for protein pattern analysis of two sets of wavelet features
that are commonly used in computer vision, Daubechies 4 wavelet features
and Gabor wavelet features [186]. These wavelet features are not invariant
to cell translation and rotation, and therefore a procedure for rotating each
image to a common frame of reference is needed. For this purpose we rotate
the image so that its principal axis aligns with the y coordinate axis and
perform an additional 180◦ rotation if necessary so that the x skewness (the
third central moment of x) is positive.
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Table 8.3. All current features for analysis of 2D images (these are the SLF7
feature set augmented by the six DNA features from SLF2). The SLF number is a
composite index for each feature including both the feature set name and an index;
e.g., SLF2.21 stands for the 21st feature in feature set SLF2.

SLF number Feature description
SLF1.1 Number of fluorescence objects in the image
SLF1.2 Euler number of the image (no. of holes minus no. of objects)
SLF1.3 Average number of above-threshold pixels per object
SLF1.4 Variance of the number of above-threshold pixels per object
SLF1.5 Ratio of the size of the largest to the smallest object
SLF1.6 Average object distance to the cellular center of

fluorescence (COF)
SLF1.7 Variance of object distances from the COF
SLF1.8 Ratio of the largest to the smallest object to COF distance
SLF7.9 Fraction of the nonzero pixels that are along an edge
SLF7.10 Measure of edge gradient intensity homogeneity
SLF7.11 Measure of edge direction homogeneity 1
SLF7.12 Measure of edge direction homogeneity 2
SLF7.13 Measure of edge direction difference
SLF1.14 Fraction of the convex hull area occupied by protein

fluorescence
SLF1.15 Roundness of the convex hull
SLF1.16 Eccentricity of the convex hull
SLF2.17 Average object distance from the COF of the DNA image
SLF2.18 Variance of object distances from the DNA COF
SLF2.19 Ratio of the largest to the smallest object to

DNA COF distance
SLF2.20 Distance between the protein COF and the DNA COF
SLF2.21 Ratio of the area occupied by protein to that occupied by DNA
SLF2.22 Fraction of the protein fluorescence that colocalizes with DNA
SLF3.17- Zernike moment features
SLF3.65
SLF3.66- Haralick texture features
SLF3.78
SLF7.79 Fraction of cellular fluorescence not included in objects
SLF7.80 Average length of the morphological skeleton of objects
SLF7.81 Average ratio of object skeleton length to the area of

the convex hull of the skeleton
SLF7.82 Average fraction of object pixels contained within its skeleton
SLF7.83 Average fraction of object fluorescence contained

within its skeleton
SLF7.84 Average ratio of the number of branch points

in skeleton to length of skeleton

Daubechies 4 wavelet features

Wavelet features are computed from discrete wavelet transformation
of an image, which captures information from both the spatial and
frequency domains of an image. The discrete wavelet transformation (DWT)
decomposes an image to a detailed resolution and a coarse approximation
by employing a scaling function and a wavelet function (corresponding to a
low-pass and a high-pass filter, respectively). Since an image is a 2D signal,
filter convolutions are conducted on the columns and the rows of an image
sequentially. In other words, the columns of an input image are first convolved
with the high-pass and low-pass filters in the DWT. The rows of the resulting
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images are convolved again with the high-pass and low-pass filters. Therefore,
four convolved images can be obtained after each DWT decomposition. These
four images correspond to four frequency groups: low-frequency component,
high-frequency component in the x direction, high-frequency component in
the y direction, and high-frequency component in the diagonal direction.
The useful information is contained in the three high-frequency components.
The low-frequency component can be further decomposed by using the same
procedure, and four new components are obtained again. At each level of
decomposition, we store the three high-frequency components and decompose
the low-frequency component. We computed features from the tenth level of
decomposition. In other words, an image was transformed by the discrete
Daubechies 4 wavelet transformation ten times. At each level, the average
energy of each of the three high-frequency components is stored as a feature.
Therefore, three features are obtained for each level (x, y, and diagonal),
giving a total of 30 features. The scaling function and the wavelet function
of the Daubechies wavelets are specified as follows:

ϕ(x) =
∑

k

α0
k · ϕ(nx − k) (8.6)

ψr =
∑

k

αr
k · ϕ(nx − k), r = 1, . . . , n − 1, (8.7)

where n is the level order, α stands for Daubechies wavelets coefficients, and
k is the translation variable. These functions are shown in Figure 8.6.

Fig. 8.6. Daubechies 4 wavelet functions. The left panel shows the scaling function
that generates the mother wavelet function on the right.
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Gabor wavelet features

The filters generated from the Gabor function, whose orientations and scales
can be customized, capture image derivative information such as edges and
lines [266]. A 2D Gabor function is a 2D Gaussian modulated by an complex
exponential:

g(x, y) = (
1

2πσxσy
)exp

{
−1

2

(
x2

σ2
x

+
y2

σ2
y

)
+ i2πWx

}
, (8.8)

where W is the frequency bandwidth of Gabor filters. The basis set formed
by Gabor functions is complete but nonorthogonal. To generate Gabor filters
as 2D wavelets, a filter bank can be formed by rotating and dilating a mother
wavelet g(x′, y′):

gmn(x, y) = a−mg(x′, y′),
a > 1, m = 0, . . . , S − 1, n = 0, . . . , K − 1 (8.9)

with

x′ = a−m(x cos θ + y sin θ)
y′ = a−m(−x sin θ + y cos θ)
θ = nπ/K
α = (Uh/Ul)1/(S−1)

W = Uh,

where S and K are the total number of scales and orientations respectively,
q is the orientation angle, α is the scale factor, and Uh and Ul are the upper
and lower interested-center frequencies and are normally set to 0.4 and 0.05
respectively to reduce redundancy in the frequency space [266]. The variances
along the x axis and y axis can be computed as

σx =
1
2π

{(
α − 1
α + 1

) (
Uh√
2 ln 2

)}−1

and

σy =
1
2π

{
tan

( π

2K

) √
U2

h

2 ln 2
− (2πσx)−2

}−1

(8.10)

We can convolve an input image with a Gabor filter with scale m and
orientation n and take the mean and standard deviation of the response
as texture features. We have used five different scales and six different
orientations yielding a total of 60 Gabor texture features.



Data Mining Methods for a Systematics of Protein Subcellular Location 159

Features for 3D Images

3D variants of SLF2. The morphological and geometric features in
SLF2 involve 2D object finding and distance calculation. We have created
3D counterparts of these features using 3D object finding and distance
calculation. Features dependent on area are straightforwardly converted to
use volume, but we chose not to replace 2D distance directly with 3D distance.
We do so because while for 2D images we consider orientation in the plane
of the microscope slide to be unimportant (thus using only the magnitude
of a distance vector as a feature), for 3D images it is inappropriate to
consider distance in the slide plane to be equivalent to distance along the
microscope axis. Therefore, for each feature in SLF2 involving distance, we
created two 3D features: the unsigned magnitude of the distance component
in the slide plane and the signed magnitude of the distance component along
the microscope axis (z). The result was feature set SLF9, consisting of 28
features capturing morphological and geometrical information in 3D protein
fluorescence microscope images [414]. Half of the features in SLF9 depend on
a parallel DNA image.

3D Haralick texture features. Four cooccurrence matrices along
horizontal, vertical, and diagonal directions are built when computing 2D
Haralick texture features. For 3D images, voxel adjacency can occur in
13 different directions and therefore 13 cooccurrence matrices need to be
constructed to calculate average values of the same 13 Haralick texture
features we have used previously. To retrieve more information from the
textures, the range between the maximum and the minimum in the 13
directions was employed as a new feature. The combination of average and
range for each of the 13 Haralick features gives a total of 26 3D texture
features [73].

3D edge features. In the interest of computational simplicity, we derived
3D edge features by applying edge finding on each 2D slice of a 3D image
and combining them to form 3D edge features (SLF11.15-11.16). Feature
set SLF11 (Table 8.4) was created by combining the 14 DNA-independent
features from SLF9 with the 3D texture and edge features.

Feature Normalization

When used for classification, we normalize each feature to have zero mean
and unit variance using the values from the training set, and then the same
mean and variance are used to normalize the features in the test set.
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Table 8.4. All current features for analysis of 3D images (these are the SLF11
feature set augmented by the 14 DNA features from SLF9).

SLF number Feature description
SLF9.1 Number of fluorescent objects in the image
SLF9.2 Euler number of the image
SLF9.3 Average object volume
SLF9.4 Standard deviation of object volumes
SLF9.5 Ratio of the max object volume to min object volume
SLF9.6 Average object distance to the protein center of fluorescence (COF)
SLF9.7 Standard deviation of object distances from the protein COF
SLF9.8 Ratio of the largest to the smallest object to protein COF distance
SLF9.9 Average object distance to the COF of the DNA image
SLF9.10 Standard deviation of object distances from the COF of

the DNA image
SLF9.11 Ratio of the largest to the smallest object to DNA COF distance
SLF9.12 Distance between the protein COF and the DNA COF
SLF9.13 Ratio of the volume occupied by protein to that occupied by DNA
SLF9.14 Fraction of the protein fluorescence that colocalizes with DNA
SLF9.15 Average horizontal distance of objects to the protein COF
SLF9.16 Standard deviation of object horizontal distances

from the protein COF
SLF9.17 Ratio of the largest to the smallest object to protein COF horizontal

distance
SLF9.18 Average vertical distance of objects to the protein COF
SLF9.19 Standard deviation of object vertical distances from the protein COF
SLF9.20 Ratio of the largest to the smallest object to protein COF vertical

distance
SLF9.21 Average object horizontal distance from the DNA COF
SLF9.22 Standard deviation of object horizontal distances from the DNA COF
SLF9.23 Ratio of the largest to the smallest object to DNA COF horizontal

distance
SLF9.24 Average object vertical distance from the DNA COF
SLF9.25 Standard deviation of object vertical distances from the DNA COF
SLF9.26 Ratio of the largest to the smallest object to DNA COF

vertical distance
SLF9.27 Horizontal distance between the protein COF and the DNA COF
SLF9.28 Signed vertical distance between the protein COF and the DNA COF
SLF11.15 Fraction of above-threshold pixels that are along an edge
SLF11.16 Fraction of fluorescence in above-threshold pixels

that are along an edge
SLF11.17/30 Average/range of angular second moment
SLF11.18/31 Average/range of contrast
SLF11.19/32 Average/range of correlation
SLF11.20/33 Average/range of sum of squares of variance
SLF11.21/34 Average/range of inverse difference moment
SLF11.22/35 Average/range of sum average
SLF11.23/36 Average/range of sum variance
SLF11.24/37 Average/range of sum entropy
SLF11.25/38 Average/range of entropy
SLF11.26/39 Average/range of difference variance
SLF11.27/40 Average/range of difference entropy
SLF11.28/41 Average/range of info measure of correlation 1
SLF11.29/42 Average/range of info measure of correlation 2
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8.2.3 Supervised Learning for Protein Subcellular Location

A supervised learning problem usually involves finding the relationship
between the predictors X and the dependent variable Y , namely Y = f(X).
A typical supervised learning system takes a training data set and models
the predictors as its inputs and the dependent variables as its outputs. The
learning process is characterized by modifying the relationship f ′ learned by
the system with regard to the difference between system prediction f ′(xi) and
expected output yi so that the system will generate close enough predictions
to the desired outputs. The performance of a classifier is often evaluated as
the average accuracy on a test set. In our work, we use the average accuracy
over all test set instances (images), which, since the number of instances per
class is roughly similar, is close to the average performance over all classes.

Given the definitions of various feature sets in the previous section, we can
transform a protein fluorescence microscope image to a number of features
and train a classifier to learn the relationship between these features and
the protein subcellular location patterns. We first introduce classification on
5-class CHO images by using a neural network classifier.

Classification of 5-Class 2D CHO Images

As the first trial of automatic recognition of protein subcellular location
patterns in fluorescence microscope images, a back-propagation neural
network with one hidden layer and 20 hidden nodes was trained using Zernike
moment features computed from the 2D CHO set [44, 45]. The images
were divided into three sets (training/stop training/test) as follows: giantin
47/4/26, DNA 39/4/36, LAMP2 37/8/52, NOP4 25/1/7, tubulin 25/3/23.
The neural network was trained on the training set and the training was
stopped when the sum of squared error on the stop set reached a minimum.
The test set was then used to evaluate the network. Table 8.5 shows the
confusion matrix averaged over eight trials.

Table 8.5. Confusion matrix for test data using a neural network classifier
with Zernike moment features on the 2D CHO images. The average classification
accuracy is 87% on eight random trials and the corresponding training accuracy is
94%. Data from reference [45].

True Output of the classifier
class Giantin DNA LAMP2 NOP4 Tubulin
Giantin 97% 0% 3% 0% 0%
DNA 3% 93% 0% 3% 0%
LAMP2 12% 2% 70% 10% 7%
NOP4 0% 0% 0% 88% 13%
Tubulin 0% 0% 12% 4% 85%
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Each element in a confusion matrix measures how much a classifier gets
“confused” between two classes. For instance, Table 8.5 shows that the
neural network classifier incorrectly considers 12% of the LAMP2 images to
represent a Giantin pattern. Each percentage at the diagonal of the matrix
is the recall of the classifier for the corresponding class. The precision of
the classifier for a specific class can be computed by dividing the number
of correctly classified images on that class by the column-sum of images of
the class in the matrix. Due to rounding, the sum of each row in a confusion
matrix might not equal 100%. The average recall achieved by Zernike moment
features and the back-propagation neural network is much higher than that
of a random classifier, 20%. A similar neural network classifier trained using
Haralick texture features in place of the Zernike moment features gave a
similar overall accuracy [45].

The recognition of the 5 subcellular location patterns in 2D CHO image
set showed that Zernike moment features and Haralick texture features are
able to capture appropriate information from fluorescence microscope images
and a trained classifier was able to give relatively accurate prediction on
previously unseen images.

Classification of 10-Class 2D HeLa Images

To test the applicability of automated classification to protein fluorescence
microscope images for other patterns and cell types, we conducted supervised
learning on the 10-class 2D HeLa image collection. This collection not
only contains location patterns covering all major cellular organelles, it
also includes patterns that are easily confused by human experts (such as
giantin and gpp130). The SLF3 and SLF4 feature sets previously described
were developed for these studies, but only modest classifier accuracies were
obtained with these whole sets. This result was presumably due to having
insufficient training images to determine decision boundaries in the large
feature space. Significant improvement in classifier performance can often be
obtained by selecting a smaller number of features from a large set. Here
we will first review methods for decreasing the size of the feature space,
then review various classifiers that can be applied to the features, and finally
describe comparison of these approaches for the 2D HeLa collection.

Feature reduction. There are two basic approaches to feature reduction:
feature recombination and feature selection. The former recombines the
original features either linearly or nonlinearly according to some criterion
to reach a smaller set of features. The latter explicitly selects a small set
of features from the original set by using some heuristic search. Following
are descriptions of four methods from each category that are widely used for
feature reduction.
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Feature recombination

1. Principal component analysis (PCA), probably the first feature
recombination method adapted for data mining, captures the linear
relationships among the original features. It projects the input data into
a lower-dimensional space so that most of the data variance is preserved. To
do that, the covariance matrix A of the input data is first constructed:

A =
1
n

n∑
j=1

xjx
T
j , (8.11)

where xj(j = 1, . . . , n) represents the m-dimensional feature vector of the jth
image and n is the total number of images. The basis of the low-dimensional
space is formed by choosing the eigenvectors of the covariance matrix A that
correspond to the largest k eigenvalues. By projecting the original data onto
this new space, we get a k(k < m)-dimensional feature space in which the
data are spread as much as possible.

2. Unlike the linear relationships obtained by PCA, nonlinear principal
component analysis (NLPCA) is often used to obtain nonlinear combinations
of the input features that capture as much of the information in the original
set as possible. A five-layer neural network is often used to extract nonlinearly
combined features [108]. In this network, the data set serves as both the
inputs and the desired outputs. The second layer nonlinearly maps the input
features to some space, and the middle layer of k nodes recombines these
features linearly. The reverse operation is carried out at the fourth layer to
attempt to make the outputs of the network equal its inputs. The training
of the neural network stops when the sum of squared error stops decreasing.
The first three layers are separated as a new neural network. By feeding the
original data, the new network will generate k nonlinear recombined features
as its outputs.

3. Another way to extract nonlinearly combined features is to use kernel
principal component analysis (KPCA). KPCA is similar to PCA except that
it first applies a nonlinear kernel function to the original data to map them
to a new high-dimensional space in which normal PCA is conducted [354].
The assumption is that nonlinear relationships among original features can
be captured through the nonlinear kernel transformation (represented as Φ
below). A dot product matrix K can be constructed by taking dot products
between any two data points in the new feature space,

K(i, j) = Φ(xi) • Φ(xj) i, j ∈ 1, 2, . . . , n, (8.12)

where xi is the m-dimensional feature vector describing the ith image and
Φ(xi) is new feature vector in the high-dimensional space. This matrix K
is similar to the covariance matrix A used in normal PCA. Eigenvalue
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decomposition is further conducted on K resulting in a group of eigenvectors
that form the new basis of the high-dimensional space. Projecting the original
data to the new space will give us the nonlinear recombined features. The
maximum number of new features is determined by the total number of data
points n, as can be seen in the definition of K. Therefore, KPCA is not only
a feature reduction method but can also work as a feature expansion method.

4. In ideal pattern recognition, the input variables, features, should
be statistically independent from each other so that the information
representation efficiency is maximized. Independent component analysis
(ICA) is used to extract statistically independent features from the original
data [108]. Given n m-dimensional data points, we can define a source matrix
s and a transformation matrix B as

D = sB, (8.13)

where D is an n×m original data matrix, s is an n×d source matrix containing
d independent source signals, and B is a d × m transformation matrix. We
can assume that s is formed by a linear transformation of D followed by a
nonlinear mapping [108]:

s = f(WD + w0), (8.14)

where W and w0 are weights involved in the linear transformation and f is
often chosen as a sigmoid function. Solving W and w0 requires choosing
a cost function that measures the independence of the d source signals.
Nongaussianity is often used as the cost function.

Feature selection

A brute-force examination of all possible subsets of some larger feature set
is an NP-hard problem. Therefore, either sequential or randomized heuristic
search algorithms are used in feature selection. A classifier or some global
statistic computed from the data is often employed to evaluate each selected
feature subset. The feature selection process can go forward or backward or
in both directions.

1. A classical measurement of feature goodness is information gain ratio,
a criterion from the decision tree theory. Given a data set D with m features,
the information gain ratio of feature Xi is defined as [275]

Gain(D, Xi) =
Entropy(D) −

∑
v∈Vi

Dv

D Entropy(Dv)

−
∑

v∈Vi

Dv

D log Dv

D

,

i = 1, 2, . . . , m (8.15)
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where Vi is the set of all possible values that Xi can have and Dv represents
the data subset in which Xi has the value of v. The gain ratio of a feature
measures how much more information will be gained by splitting a decision
tree node on this feature. It is more advantageous than normal information
gain because it penalizes features that are different at every data point. A
simple ranking of features by their gain ratios can help identify the “best”
features.

2. Every data set has more or less self-similarity, which can be measured
by its intrinsic dimensionality. The intrinsic dimensionality of a self-similar
data set should be much less than the actual dimension in its feature
space. Therefore, those features that do not contribute to the intrinsic
dimensionality are candidates to be dropped. One way to determine the
intrinsic dimensionality of a data set is to compute its fractal dimensionality,
also known as correlation fractal dimensionality [407]. A feature selection
scheme can be formed by considering the goodness of each feature by
measuring how much it will contribute to the fractal dimensionality. An
algorithm, FDR (fractal dimensionality reduction), implements this idea by
employing a backward elimination process where the feature whose deletion
changes the fractal dimensionality the least gets dropped each time until no
more features can decrease the total fractal dimensionality by a minimum
amount [407]. This algorithm can be used for both labeled and unlabeled
data, and it also gives an approximate final number of features we should
keep, which is the fractal dimensionality of the original data.

3. In a well-configured classification problem, it can be found that different
classes are far apart from each other in the feature space where each class is
also tightly packed. The job of a classifier is made much easier by features
that have this property. Stepwise discriminant analysis [203] uses a statistic,
Wilks’s Λ, to measure this property of a feature set. It is defined as

Λ(m) =
|W (X)|
|T (X)| , X = [X1, X2, . . . , Xm], (8.16)

where X represents the m features currently used and the within-group
covariance matrix W and the among-group covariance matrix T are defined
as

W (i, j) =
q∑

g=1

ng∑
t=1

(Xigt − X̄ig)(Xjgt − X̄jg), i, j ∈ 1, 2, . . . , m (8.17)

T (i, j) =
q∑

g=1

ng∑
t=1

(Xigt − X̄i)(Xjgt − X̄j), i, j ∈ 1, 2, . . . , m, (8.18)

where i and j represent the ith and jth features, Xigt is the ith feature value
of the data point t in the class g, X̄ig is the mean value of the ith feature
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in the class g, X̄i is the mean value of the ith feature in all classes, q is the
total number of classes, and ng is the number of data points in the class g.
Since Wilks’s Λ is a group statistic, an F statistic is often used to convert it
to the confidence of including or removing a feature for the current feature
set. A feature selection process can be formed according to the F statistic at
each step by starting from the full feature set.

All these methods provide a criterion for adding or subtracting a feature
and follow a sequential, deterministic path through the feature space. This
search can be either forward (starting with no features and adding one at each
step), backward (starting with all features and removing one at each step),
or forward-backward, in which we choose whether to add or subtract at each
step. Both the forward and the backward methods are greedy and therefore
limited in the number of possibilities considered (making them efficient). The
forward-backward method is one order less greedy so that initial, nonoptimal
inclusions of features can be reversed.

4. As an alternative to these deterministic methods, we can incorporate
random choice into a search strategy. A genetic algorithm is often used for
this purpose [440]. It treats each possible feature subset as a bit string,
with 1 representing inclusion of the feature. The initial pool of bit strings
is randomly generated, and all strings go through mutation and crossover at
each generation. At the end of each generation, a classifier is applied as the
fitness function to rank all feature subsets at that generation according to
their prediction errors. The feature subsets giving lowest error are selected
as well as some lower-performing subsets that are selected under predefined
probability. The selection process will stop if either the maximum number
of generations is reached or no more improvement can be observed between
generations. Figure 8.7 shows an outline of the genetic algorithm approach.

Fig. 8.7. Flow chart of feature selection using genetic algorithms.

Classifiers

Support vector machines (SVMs)

Support vector machines are generalized linear classifiers. A linear classifier
looks for a hyperplane, a linear decision boundary, between two classes if
one exists. It will perform badly if the optimal decision boundary is far from
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linear. Sometimes there are many possible linear classifiers to separate two
classes making the choice between them difficult. Therefore, there are two
constraints in classical linear classifiers, namely the linear decision boundary
constraint and the optimal choice among several candidates. Support vector
machines were designed to solve these two problems in linear classifiers.
The same kernel trick used in KPCA is applied in support vector machines.
The original feature space is transformed to a very high, sometimes infinite,
dimensional space after a kernel mapping. The nonlinear decision boundary
in the original feature space can be close to linear in the new feature
space by applying a nonlinear kernel function. To choose the optimal linear
boundary in the new high-dimensional space, a support vector machine selects
the maximum-margin hyperplane that maximizes the minimum distance
between the training data and the hyperplane. Intuitively, this hyperplane
will prevent overfitting by reducing its representation to a small number
of data points lying on the boundary. The maximum-margin criterion was
proved to minimize the upper bound on the VC dimension of a classifier, an
objective goodness measurement of a classifier [410].

Support vector machines can model very complex decision boundaries in
the original feature space through the kernel trick. A kernel function K is
defined as the inner product of two data points in the new feature space Φ
(Equation 8.12) and should satisfy Mercer’s conditions [158]:

K(x, x′) =
∞∑
m

αmΦm(x)Φm(x′), αm ≥ 0,

∫ ∫
K(x, x′)g(x)g(x′)dxdx′ > 0, g ∈ L2 (8.19)

As reviewed before [158], the final discriminant function can be
represented as

f(x) = sgn(
l∑

i=1

αiyiK(xi, x) + b) (8.20)

with b = − 1
2

∑l
i=1 αiyiK(xi, xr + xs), where xr and xs are support vectors

located at the boundary of the maximum margin satisfying

αr, αs > 0, yr = −1, ys = 1.

This system can be solved as a constrained quadratic programming
problem,

α∗ = argmin
1
2

l∑
i=1

l∑
j=1

αiαjyiyjK(xi, xj) −
l∑

k=1

αk, (8.21)
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with constraints

C ≥ αi ≥ 0, i = 1, . . . , l∑l
j=1 αjyj = 0

Different kernel functions are available, such as linear, polynomial, rbf,
exponential-rbf, and neural network kernels. The kernel parameters can be
selected by cross-validation:

K(xi, xj) = 〈xi, xy〉 linear kernel
K(xi, xj) = (〈xi, xj〉 + 1)d polynomial kernel
K(xi, xj) = exp

(
−‖xi−xj‖2

2σ2

)
radial basis kernel

K(xi, xj) = exp
(
−‖xi−xj‖

2σ2

)
exponential radial basis kernel

To expand the binary SVM to K-class SVM, three methods are often
used [231, 318, 411]. The max-win strategy creates K binary SVMs, each
distinguishes class i versus non-i. The class that has the highest score will
be selected as the predicted target. The pairwise strategy creates a total
of K(K − 1)/2 binary classifiers between every pair of classifiers and each
classifier gets one vote. The predicted target will be the class that gets the
most votes. The DAG (directed acyclic graph) strategy puts the K(K − 1)/2
binary classifiers in a rooted binary DAG. At each node, a data point is
classified as non-i if the class i loses. The predicted target is the one that is
left after tracing down the tree from the root.

AdaBoost

As shown in support vector machine learning, not all training data are equally
useful for forming the decision boundary. Some of the training data are
easily distinguished and some require a finely tuned boundary. AdaBoost is a
classifier that manipulates the weights on the training data during training.
It employs a base learner generator that generates a simple classifier such as
a neural network or decision tree that is trained with a differently weighted
set of training data at each iteration. More weight will be put on the wrongly
classified data points and less weight on the correctly classified data points.
Therefore, each base classifier is trained toward those hard examples from
the previous iteration. The final classifier merges all base learners under some
weighting scheme. Following is the AdaBoost training process [349].

Given a binary classification problem with m two-dimensional data points:
(x1, y1), . . . , (xm, ym), where xi ∈ X, yi ∈ Y = {−1, +1}.
Uniform weight for each data point D1(i) = 1

m .
For t = 1, . . . , T :
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Train the rule generator using distribution Dt.
Generate base rule ht : X → �.
Choose αt ∈ �.
Update:

Dt+1(i) =
Dt(i)exp(−αtyiht(xi))

Zt
, (8.22)

where Zt is the sum of all numerators such that Dt+1 represents a
probability.
Each base classifier tries to minimize the training error εt, where

εt = Pri∈Dt [ht(xi) 	= yi],

and the weight αt associated with each data point can be updated as

αt =
1
2

ln(
1 − εt

εt
).

The final discriminant function is

H(x) = sign

(
T∑

t=1

αtht(x)

)
. (8.23)

Similar to SVM, AdaBoost was designed as a binary classifier and several
multiclass variants have been made [132, 350].

Bagging

Bagging, also called bootstrap aggregation, is a classifier that bootstraps an
equally weighted random sample from the training data at each iteration
[104]. Unlike AdaBoost, which pays special attention to previously hard
examples, bagging works by averaging performances of a base classifier on
different random samples of the same training data. It has been shown that
some classifiers such as neural network and decision trees are easily skewed by
small variations in the training data. By averaging out the random variances
from repetitive bootstrapping, the base classifier will be more robust and
therefore give more stable prediction results. The outputs of the resulting
base classifiers from all iterations are finally averaged to give the prediction
H(x):

H(x) = sign(
T∑

t=1

ht(Xt)/T ), (8.24)
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where Xt is a bootstrap sample from the training data, ht(Xt) is a binary
classifier learned from the sample Xt, and T is the total number of iterations.

Mixtures-of-Experts

A mixtures-of-experts classifier employs a divide-and-conquer strategy to
assign individual base classifiers to different partitions of the training data
[197, 424]. It models the data generation process as

P (Y | X) =
∑
Z

P (Z | X)P (Y | X, Z), (8.25)

where Y stands for the targets, X represents the input variables, and Z is a
hidden variable representing local experts related to each data partition. The
generation of the dependent variables can be regarded as two steps: first,
individual local experts are assigned to different partitions of the training
data with probability P (Z|X); second, the target variable is calculated given
the local data and experts as P (Y |X, Z). The first step is modeled using a
gating network and the second step can involve various classifiers as local
experts. The final output of a mixtures-of-experts classifier can be regarded
as combining the outputs from each local expert weighted by the probability
of assigning a data partition to that expert.

Majority-voting classifier ensemble

Although theoretically sound, every classifier has some constraints in its
performance; more important, each suffers from overfitting given limited
training data. A classifier ensemble can alleviate these problems by
compensating for the weakness of a classifier with the strengths of other
classifiers, assuming that the errors made by individual classifiers are not fully
correlated [104]. Majority voting is a simple and common choice when fusing
different classifiers. It performs as well as more complex trainable methods
such as Bayesian voting and the evaluation set method [226].

Results for feature reduction. To find the best feature reduction method
for our problem, the eight feature reduction methods described earlier were
compared, starting with the 2D feature set SLF7. We used a support vector
machine classifier with Gaussian kernel (σ2 = 50, c = 20) along with tenfold
cross validation to evaluate different numbers of features chosen by each
method [187]. A summary of the results is shown in Table 8.6.

The mother feature set, SLF7, contains 84 features that can achieve an
average prediction accuracy of 85.2% on the support vector machine classifier
with tenfold cross validation. From Table 8.6, we can see that the four
feature selection methods perform generally better than the four feature
recombination methods. To statistically compare the performance of feature
reduction to that of the original feature set, we conducted a paired t-test
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Table 8.6. Summary of results from eight feature reduction methods evaluated
by a multiclass support vector machine classifier with radial basis kernel on the
2D HeLa collection. The starting point for feature reduction was set SLF7. The
P values for the hypothesis that a given method shows higher accuracy than the
original 84 features are shown where relevant. Data from reference [187].

Minimum Highest P value of paired
number of accuracy t-test against the

features for over (number of result from the
Method 80% accuracy features) original 84 features
None n/a 85.2% (all 84)
PCA 17 83.4% (41)

NLPCA none found 75.3% (64)
KPCA 17 86.0% (117) 0.38
ICA 22 82.9% (41)

Information Gain 11 86.6% (72) 0.08
SDA 8 87.4% (39) 0.02
FDR 18 86.2% (26) 0.15

Genetic Algorithm none found 87.5% (43) 0.04

on the tenfold cross validation results [275] between each feature reduction
method and the mother feature set. Only stepwise discriminant analysis and
a genetic algorithm achieve statistically significant (P ≤ 0.05) improvements
over the SLF7 feature set under a 95% confidence level, although the genetic
algorithm approach is much more computationally demanding. SDA also
generates the smallest feature subset that can achieve an average accuracy
over 80%. This subset, consisting of only eight features, is defined as SLF12
and has the potential to serve as a multimedia basis set for indexing in an
R-tree or a KD-tree enabling image content retrieval from protein image
databases. Considering both speed and effectiveness, stepwise discriminant
analysis should be regarded as the best feature reduction method among the
eight, which achieves significant improvement in prediction accuracy using
less than half of the original features. Perhaps by coincidence, SDA was the
approach used in our initial work on the 2D HeLa image collection [46]. All
the work described below uses SDA as the feature selection method.

Our initial work on classification of the 2D HeLa image collection used
a neural network classifier with one hidden layer and 20 hidden nodes [46].
We have used this classifier as a reference point for comparing the value of
various features sets as the sets have been developed. Table 8.7 summarizes
this comparison. As discussed earlier, SLF2 consists of morphological, edge,
hull, and DNA features. SLF4 includes the Zernike moment features and
Haralick texture features as well, and the inclusion of these features increases
the average accuracy by 5% over SLF2 alone. Selecting a subset from SLF4
by SDA (to form SLF5) further increases the average accuracy by 2%. The
addition of the nonobject fluorescence and object skeleton features in SLF7
[289] provides an additional 5% boost in performance once SDA is used.

SLF2, SLF4, and SLF5 all require a parallel DNA image to calculate
features that provide protein localization information relative to the cell
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Table 8.7. Average performance of a neural network classifier with one hidden
layer and 20 hidden nodes on the 2D HeLa dataset with various feature sets. N/A,
not available.

Feature Requires Number of tenfold cross validation accuracy
sets DNA features using a neural network classifier (%)

image? On test set On training set
SLF2 yes 22 76 89
SLF4 yes 84 81 95
SLF5 yes 37 by SDA 83 95

from SLF4
SLF13 yes 31 by SDA 88 N/A

from SLF7+DNA
SLF3 no 78 79 94
SLF8 no 32 by SDA 86 N/A

from SLF7

nucleus. Because of the value of the cell nucleus as a stable and central
reference point, location patterns can be distinguished more easily using these
additional features. We can see how much these features contribute to the
overall classification performance by comparing SLF3 and SLF4 (which differ
only in the presence of the DNA features). These sets differ by 2% in average
accuracy. Comparing SLF8 and SLF13 (which also differ only in the DNA
features) confirms that the benefit of the DNA features is a 2% increase in
average performance.

Results for different classifiers. The classification results presented so
far were achieved by using a single neural network classifier with one hidden
layer and 20 hidden nodes or with an SVM. To determine whether results
could be improved using other classification approaches, we tested the eight
different classifiers described [186]. The base learner in AdaBoost, bagging,
and mixtures-of-experts was the same, a neural network classifier with
one hidden layer [81]. The parameters associated with each classifier were
determined by cross validation. After optimizing each classifier, we created
a majority-voting classifier involving the best choices of the eight classifiers
(the majority-voting classifier performs better than each single classifier in
all our experiments).

We focused our efforts on two feature sets, SLF13 and SLF8, because
they were the best feature sets with and without DNA features. Table 8.8
shows the optimal majority-voting classifier selected for each feature set with
statistical comparison to the previously used neural network classifier. For
SLF13, the best classifiers selected from the eight are an rbf-kernel support
vector machine, an AdaBoost classifier, and a mixtures-of-experts classifier.
The average accuracies were compared to the corresponding value from Table
8.7 by the paired t-test. Significant improvement (P ≤ 0.5) was observed by
upgrading the neural network classifier to a majority-voting classifier under
a 95% confidence level. The mean and standard deviation of the pairwise
classifier error correlation coefficients were also listed in the table. The small
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correlation in the classification errors made by the eight classifiers explains
the advantage of creating a majority-voting classifier. Similarly, an ensemble
comprising an exponential rbf-kernel support vector machine, an AdaBoost
classifier, and a bagging classifier performed significantly better than the
previous neural network on SLF8.

Table 8.8. Performance of the optimal majority-voting classifiers for feature sets
SLF13 and SLF8 on the 2D HeLa dataset. Data from reference [186].

Feature Classifier Pairwise Tenfold P value of
set classifier error cross paired

correlation validation t-test
coefficients accuracy (%)

Rbf-kernel SVM
SLF13 AdaBoost 0.1 ± 0.06 90.7 3.0 × 10−3

Mixtures-of-experts
Exp rbf-kernel SVM

SLF8 AdaBoost 0.09 ± 0.06 89.4 3.0 × 10−4

Bagging

Improved classification using wavelet features. The Gabor and
Daubechies wavelet features described earlier are sufficiently different
from the previous SLF features that they may extract previously unused
information from the fluorescence microscope images. We therefore examined
whether they could improve classification accuracy on the 2D HeLa image
set. Stepwise discriminant analysis was performed on a combined feature set
including SLF7, Gabor wavelet features, and Daubechies 4 wavelet features
with and without DNA features. Two new feature sets were defined: SLF15,
the best 44 features selected by SDA from the full feature set except DNA
features, and SLF16, the best 47 features selected by SDA from the full
feature set including DNA features. The incremental evaluations generating
the two new feature sets were conducted using the optimal majority-voting
classifiers listed in Table 8.8. Finally, we considered again all possible choices
of the eight classifiers in majority-voting ensembles for these two new
feature sets. The optimal majority-voting classifiers are shown in Table 8.9.
The performances of the new majority-voting classifiers were compared to
those of the previous majority-voting classifiers in Table 8.8. Statistically
significant improvement was observed for SLF15 compared to SLF8, but the
improvement from SLF13 to SLF16 was not significant. The benefit of DNA
features previously estimated at 2% decreased after using majority-voting
classifiers and adding new features. The confusion matrix of the majority-
voting classifier for SLF16 is shown in Table 8.10. Both giantin and Gpp130
can be distinguished over 80% of the time, and so can the endosome and
lysosome patterns.
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Table 8.9. Performance of the optimal majority-voting classifiers for feature sets
SLF15 and SLF16 on the 2D HeLa dataset. Data from reference [186].

Feature Classifier Pairwise Tenfold P value of
set classifier error cross paired

correlation validation t-test
coefficients accuracy (%)

Rbf-kernel SVM
Exponential Rbf- 0.1 ± 0.06 91.5 0.02

SLF15 Kernel SVM
Polynomial-kernel

SVM
Neural network

Linear-kernel SVM 0.1 ± 0.07 92.3 0.08
SLF16 Exprbf-kernel SVM

Polynomial-kernel
SVM

AdaBoost

Table 8.10. Confusion matrix of the optimal majority-voting classifier for SLF16
on the 2D HeLa dataset. Data from reference [186].

True Output of the classifier (%)
class DNA ER Gia Gpp Lam Mit Nuc Act TfR Tub
DNA 99 1 0 0 0 0 0 0 0 0
ER 0 97 0 0 0 2 0 0 0 1
Gia 0 0 91 7 0 0 0 0 2 0
Gpp 0 0 14 82 0 0 2 0 1 0
Lam 0 0 1 0 88 1 0 0 10 0
Mit 0 3 0 0 0 92 0 0 3 3
Nuc 0 0 0 0 0 0 99 0 1 0
Act 0 0 0 0 0 0 0 100 0 0
TfR 0 1 0 0 12 2 0 1 81 2
Tub 1 2 0 0 0 1 0 0 1 95

Through this section, we have shown how we optimized our feature sets
and our classifiers such that the classification performance on the 2D HeLa
image set was improved. We also trained a human classifier on the same data
set, obtaining the results shown in Table 8.11 with an average classification
accuracy of 83% [290]. This is much lower than the current 92% achieved
by using our machine learning approaches. Although the human expert
appears to have a little better understanding of the mitochondria and the
endosome patterns, his performance when distinguishing giantin and Gpp130
was equivalent to random choice. Thus our methods capture some information
that a human expert may not be able to appreciate.

Classification of 11-Class 3D HeLa Images

As mentioned above, 3D protein fluorescence microscope images can provide
more information and are more reliable to represent protein subcellular
distribution in polarized cells. We therefore extended our features to 3D
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Table 8.11. Confusion matrix of a human classifier on the 2D HeLa dataset. Data
from reference [290].

True Output of the classifier (%)
class DNA ER Gia Gpp Lam Mit Nuc Act TfR Tub
DNA 100 0 0 0 0 0 0 0 0 0
ER 0 90 0 0 3 6 0 0 0 0
Gia 0 0 56 36 3 3 0 0 0 0
Gpp 0 0 53 43 0 0 0 0 3 0
Lam 0 0 6 0 73 0 0 0 20 0
Mit 0 3 0 0 0 96 0 0 0 0
Nuc 0 0 0 0 0 0 100 0 0 0
Act 0 0 0 0 0 0 0 100 0 0
TfR 0 13 0 0 3 0 0 0 83 0
Tub 0 3 0 0 0 0 0 3 0 93

images and trained a neural network classifier to recognize the location
patterns [413].

The first feature set we used to classify the 11-class 3D HeLa image set was
SLF9, which contains 28 features describing morphological and geometrical
information in 3D images. A neural network classifier with one hidden layer
and 20 hidden nodes was employed. The average recall across 11 classes after
50 cross-validation trials was 91%, which is as good as the 2D classification
result. We then applied stepwise discriminant analysis on SLF9 and the best
nine features returned by SDA were defined as SLF10. The same neural
network classifier was trained on SLF10 and the average performance is shown
in Table 8.12 after 50 cross-validation trials.

Table 8.12. Confusion matrix of a neural network classifier with one hidden layer
and 20 hidden nodes on the 3D HeLa dataset using feature set SLF10. Data from
(Velliste and Murphy, in preparation).

True Output of the classifier (%)
class Cyt DNA ER Gia Gpp Lam Mit Nuc Act TfR Tub
Cyt 100 0 0 0 0 0 0 0 0 0 0
DNA 0 99 0 0 0 0 0 0 0 0 0
ER 0 0 95 0 0 0 0 0 0 2 2
Gia 0 0 0 91 2 7 0 0 0 0 0
Gpp 0 0 0 7 92 1 0 0 0 0 0
Lam 0 0 0 0 3 94 0 0 0 2 0
Mit 0 0 0 2 0 1 95 0 2 1 0
Nuc 0 0 0 0 0 0 0 100 0 0 0
Act 0 0 3 1 0 0 4 0 90 2 0
TfR 0 0 2 0 0 4 2 0 2 89 1
Tub 0 0 4 0 0 0 0 0 0 3 93

These results are the first in which the patterns giantin and Gpp130 can
be distinguished at better than 90% accuracy. The discrimination between
endosomes and lysosomes was also much higher than the best results from
2D classification. Recognizing the actin pattern was still more challenging for
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3D images than for 2D images. The average prediction accuracy across 11
classes was 94%.

Classification of Sets of HeLa Images

Biologists often take a set of images under each experimental condition to
increase the reliability of any conclusions. A set of images from the same
preparation is often taken for every protein. For computational analysis, we
have shown that creating sets of images drawn from staining the same protein
can dramatically improve classification accuracy [46]. For this purpose the
same neural network classifier was used to classify sets of images randomly
chosen from each class in the test set. Each set was classified as the dominant
class assigned to individual images in the set. An unknown label was assigned
to a set if no dominant class could be found. Table 8.13 shows the average
performance for classifying sets of 10 images from the 2D HeLa set with SLF5
features. Most classes can be discriminated more than 97% of the time except
for the endosome pattern, which is often confused with the lysosome pattern.
The two closely related patterns giantin and Gpp130 can be distinguished
more than 98% of the time. Indeed, endosome and lysosome have more
location similarity than giantin and Gpp130 from the results shown so far.
Most errors were due to failing to find a dominant prediction by plurality
rule. The average performance for the sets of 10 images using SLF5 was 98%,
much higher than the average 83% achieved with single protein images using
the same feature set.

Table 8.13. Confusion matrix of a neural network classifier with one hidden layer
and 20 hidden nodes for classifying sets of 10 images from the 2D HeLa dataset
using the SLF5 feature set. Data from reference [46].

True Output of the classifier (%)
class DNA ER Gia Gpp Lam Mit Nuc Act TfR Tub Unk
DNA 100 0 0 0 0 0 0 0 0 0 0
ER 0 100 0 0 0 0 0 0 0 0 0
Gia 0 0 98 0 0 0 0 0 0 0 1
Gpp 0 0 0 99 0 0 0 0 0 0 1
Lam 0 0 0 0 97 0 0 0 1 0 2
Mit 0 0 0 0 0 100 0 0 0 0 0
Nuc 0 0 0 0 0 0 100 0 0 0 0
Act 0 0 0 0 0 0 0 100 0 0 0
TfR 0 0 0 0 6 0 0 0 88 0 6
Tub 0 0 0 0 0 0 0 0 0 100 0

Similar enhancement of accuracy was also observed for the 3D HeLa images
(Table 8.14). Using a set size of 9, we achieved nearly perfect classification
accuracy of 99.7% with the feature set SLF9.
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Table 8.14. Confusion matrix of a neural network classifier with one hidden layer
and 20 hidden nodes for classifying sets of 9 images from the 3D HeLa dataset using
the feature set SLF9. Data from (Velliste and Murphy, in preparation).

True Output of the classifier (%)
class DNA ER Gia Gpp Lam Mit Nuc Act TfR Tub Unk
DNA 100 0 0 0 0 0 0 0 0 0 0
ER 0 99 0 0 0 0 0 0 0 1 0
Gia 0 0 100 0 0 0 0 0 0 0 0
Gpp 0 0 0 99 0 0 0 0 0 0 0
Lam 0 0 0 0 100 0 0 0 0 0 0
Mit 0 0 0 0 0 100 0 0 0 0 0
Nuc 0 0 0 0 0 0 100 0 0 0 0
Act 0 0 0 0 0 0 0 100 0 0 0
TfR 0 0 0 0 0 0 0 0 100 0 0
Tub 0 1 0 0 0 0 0 0 0 99 0

8.2.4 Statistical Analysis for Image Sets

The high accuracy achieved in supervised learning of protein subcellular
location patterns illustrates that the subcellular location features are good
descriptors of protein fluorescence microscope images. This finding lends
strong support to applying the subcellular location features in other
applications such as hypothesis tests on image sets. Statistical analysis on
image sets is often desirable for biologists in interpreting and comparing
experimental results quantitatively. Two statistical analyses will be described
in this section, objective selection of the most representative microscope
image from a set [270] and objective comparison of protein subcellular
distributions from two image sets [335].

Objective Selection of Representative Microscope Images

Current fluorescence microscopy techniques allow biologists to routinely take
many images in an experiment. However, only a few images can be included in
a report, which forces biologists to select representative images to illustrate
their experimental results. Prior to the work described here, no objective
selection method was available to authors, and readers of an article would
typically have little information about the criteria that were used by the
authors to select published images.

To address this situation, we have described a method in which each
protein fluorescence microscope image is represented by SLF features and
distance metrics are defined on the feature space to quantify image similarity
[270]. The most representative image is the one that is the closest to the
centroid of the image set in the feature space (the mean feature vector of an
image set), and all other images are ranked by distance from this centroid.
We tested variations on this approach using mixed sets of protein patterns
and observed that the best results were obtained using outlier rejection
methods so that the centroid can be reliably estimated. Figure 8.8 shows
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example images for the Golgi protein giantin chosen by some of the typicality
methods. The giantin images with scattered structure were ranked as least
typical while those with compact structure were ranked as most typical. This
ranking is consistent with biological knowledge about the Golgi complex,
which decomposes during mitosis or under abnormal cell conditions. (The
cell in panel G appears to be compact but on close inspection has a single
dim vesicle, which may indicate the onset of Golgi breakdown and which
makes the pattern atypical.)

Fig. 8.8. Application of typicality ranking to a diverse image set. Giantin images
ranking high in typicality (A–D) and ranking low in typicality (E–H) were chosen
by the methods described in the text. From reference [270].

Objective selection of representative data points has general interest in
data mining. In our problem, we are aiming at the best microscope image
to represent a set acquired from experiments. In information retrieval, a
summary that represents an article can be generated by selecting several
sentences from the article objectively. Both distance metric and features are
important for a successful selection. The results showed that Mahalanobis
distance is a better distance metric than Euclidean distance. The ability to
correctly select the most typical images from contaminated image sets assures
the reliability of image typicality ranking in uncontaminated sets.

Objective Comparison of Protein Subcellular Distributions

Proteins can change their subcellular location patterns under different
environmental conditions. Biologists are often interested in such changes
caused by pharmacological treatments or hormones. Traditionally, visual
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examination was employed to compare the fluorescence microscope image sets
from two or more different conditions. This method was not very sensitive
and was not suitable for objective and quantitative analysis of protein
subcellular location changes. With the development of protein subcellular
location features, objective and quantitative analysis of protein subcellular
distributions has become possible. Instead of comparing two image sets
visually, a subcellular location feature matrix can be calculated for each
image set and statistical techniques can be applied to compare the two
feature matrices. We used two statistical hypothesis tests for this task,
namely univariate t-test and Hotelling T 2-test [229]. The Hotelling T 2-test is a
multivariate counterpart of the univariate t-test; it yields a statistic following
an F distribution with two degrees of freedom: the total number of features
and the total number of images in the two sets minus the total number of
features. The critical F value given a confidence level can be compared to the
F value from Hotelling T 2-test of two image sets.

To characterize this approach, we used the 2D HeLa image collection.
Each image was described by the feature set SLF6 (a combination of Zernike
moment features and SLF1). We first compared all pairs of classes in the 2D
HeLa set and the results are shown in Table 8.15. All class pairs were regarded
as distinguishable since their F values were larger than the critical value. The
distribution of the F values corresponded well to the classification results.
Giantin and Gpp130 as well as endosome and lysosome patterns were the least
distinguishable in both classification and image sets comparison. The well-
classified DNA pattern was also the easiest pattern to be distinguished from
all other image sets with an average F value of 180 across nine comparisons.
To examine whether the Hotelling T 2-test as we applied it was not only
able to distinguish different patterns but also able to correctly recognize
indistinguishable patterns, we chose the two largest classes, tfr and phal,
and randomly sampled two equal subsets from each class 1000 times. The
Hotelling T 2-test was conducted to compare the two sets drawn from the
same class and the results are summarized in Table 8.16. The average F
value for each class is less than the critical F value and less than 5% of the
total of 1000 comparisons failed (as expected for a 95% confidence interval).
Therefore, the method we employed to compare two image sets is able to
identify two same protein subcellular location distributions.

One question that might be asked is whether the difference identified by
the statistical test in closely related patterns is due to artifactual protocol
differences rather than significant subcellular distribution change. To address
this question, we conducted the same test on two image sets prepared under
different experimental conditions. One image set was acquired by tagging
giantin with an antibody collected from rabbit antiserum and the other by
mouse antigiantin monoclonal antibody. The F value with 95% confidence
level from these two sets was 1.04 compared to the critical value 2.22.
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Table 8.15. Hotelling T 2-test comparing all class pairs in the 2D HeLa dataset
using SLF6. The critical F values with 95% confidence level range from 1.42 to 1.45
depending on the number of images in each pair. Note that all pairs of classes are
considered to be different at that confidence level. Data from reference [335].

Class No. of DNA ER Gia Gpp Lam Mit Nuc Act TfR
images

DNA 87
ER 86 83.2
Gia 87 206.1 34.7
Gpp 85 227.4 44.5 2.4
Lam 84 112.2 13.8 10.7 11.4
Mit 73 152.4 8.9 39.2 44.5 15.9
Nuc 73 79.8 39.8 17.2 15.1 14.5 46.6
Act 98 527.2 63.5 325.3 354.0 109.8 16.0 266.4
TfR 91 102.8 7.4 14.8 15.6 2.8 9.2 20.5 29.1
Tub 91 138.3 10.8 63.0 72.2 18.4 7.0 49.4 22.4 5.5

Table 8.16. Hotelling T 2-test comparing 1000 image sets randomly selected from
each of the two classes using SLF6. Data from reference [335].

tfr phal
Average F 1.05 1.05
Critical F(0.95) 1.63 1.61
Number of failing sets out of 1000 47 45

Therefore, potential minor differences introduced by experimental protocols
were appropriately ignored by the method.

Various features in SLF6 might contribute differently to distinguish two
distributions. We therefore conducted a univariate t-test on each feature and
computed the confidence level of each feature change. The results on giantin
and Gpp130 image sets are shown in Table 8.17. Features that describe
the shape of the pattern and object characteristics account for the major
distinction between giantin and Gpp130.

The objective comparison of protein subcellular distributions by
subcellular location features and statistical tests enables automatic and
reproducible analysis. The sensitivity and reliability of this method have
been proved by experiments comparing both different and identical protein
subcellular distributions. The method can be used to study different effects
of hormones or pharmacological agents on the subcellular location of certain
target proteins. It also has potential in high-throughput drug screening where
the relationship between various candidate chemicals and target genes can
be studied quantitatively in terms of subcellular distribution.

8.2.5 Unsupervised Clustering for Location Proteomics

Data clustering is an important tool for studying unlabeled data. It
often involves segmenting the data into subgroups by introducing some
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Table 8.17. Most distinguishable features evaluated by a univariate t-test on each
feature in SLF6 from comparing two image sets: giantin and Gpp130. Data from
reference [335].

Feature Confidence level at which
feature differs

Eccentricity of the ellipse equivalent
to the protein image convex hull 99.99999
Convex hull roundness 99.9999
Measure edge direction homogeneity 1 99.9873
Average object size 99.9873
Average object distance to the center
of fluorescence 99.9873
Ratio of largest to smallest object to
image center of fluorescence distance 99.9873

distance/similarity measurement so that the examples in the same subgroup
have more similarity than those in other subgroups. The most trivial
segmentation is to isolate each data point as its own cluster, which provides
the best within-group similarity. To avoid trivial segmentation, constraints
are often introduced in data clustering algorithms such as the minimum size
of a cluster and the maximum number of clusters. Given a distance metric,
data clustering can also be regarded as a graph separation problem where
each node represents a data point and each edge represents the distance
between two nodes. Various graph partitioning criteria have been proposed
such as min-cut [435], average-cut [346] and normalized-cut [366].

The organization of clusters can be either flat or hierarchical.
Nonhierarchical clustering algorithms such as K-means and Gaussian mixture
models partition data into separate subgroups without any hierarchical
structure. The number of total clusters in these algorithms is either
fixed by the user or determined by some statistical criterion. On the
contrary, hierarchical clustering algorithms require only a metric definition.
Agglomerative algorithms start from all data points, merge similar ones from
each immediate lower level, and finally reach a single cluster root. Divisive
algorithms, on the other hand, go in the opposite direction. The advantage of
a hierarchical structure is that different number of clusters can be obtained at
each level so that we can choose the optimal number of clusters intuitively.
The subcellular location features have been proved to be able to measure
the similarity of protein subcellular location patterns. They define a metric
space for clustering protein fluorescence microscope images according to their
location similarity. In this section, we will describe how these features are used
to build a subcellular location tree (SLT) that is a major goal of location
proteomics.
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Clustering the 10-Class 2D HeLa Images

Biologists have been studying tree structures of protein families and the
evolution of organisms for a long time. Trees provide a clear view of how every
element is related to each other. Similar to the sequence similarity metric for
a phylogenetic tree, we can employ the location similarity metric described
by SLF features to create a subcellular location tree for different proteins.
As a first attempt, we applied an average linkage agglomerative hierarchical
clustering algorithm to create a dendrogram (subcellular location tree) for
the 10 protein subcellular location patterns in the 2D HeLa image set [289].
The feature set we used was SLF8, containing 32 features. For each class
of images, we calculated its mean feature vector and the feature covariance
matrix. The distance between each class pair was the Mahalanobis distance
between the two mean feature vectors. A dendrogram was then created based
on the Mahalanobis distances by an agglomerative clustering method (Figure
8.9). As expected, both giantin and Gpp130 were grouped first followed by the
lysosome and endosome patterns. The grouping of tubulin and the lysosome
and endosome patterns also agrees with biological knowledge in that both
lysosomes and endosomes are thought to be involved in membrane trafficking
along microtubules.

Clustering the 3D 3T3 Image Set

Instead of clustering only 10 protein subcellular location patterns, we can
imagine applying the algorithm used earlier to cluster all proteins expressed
in a given cell type. As mentioned before, the 3D 3T3 image set was created
by the CD tagging project [200, 201, 396], whose goal is to tag all expressed
proteins in this cell type. Since the project is ongoing, we applied our
clustering method on an early version of the CD-tagging protein database
containing 46 different proteins [73].

The number of 3D images in each of the 46 clones ranges from 16 to
33, which makes the effect of a single outlier noticeable. To obtain robust
estimation of the mean feature vector for each class, we first conducted outlier
removal from the 3D 3T3 image set. Either a Q-test (when a clone has fewer
than 10 cells) or a univariate t-test (more than 10 cells per clone) was carried
out on each feature. A cell was regarded as an outlier if any one of its features
failed the test. After outlier removal, we ended up with 660 full cell images
for 46 clones, each of which has 9 to 22 cells.

We first clustered the 46 clones by using the 14 SLF9 features that do not
require a DNA label. All 14 features were z-scored across all clones so that
they had mean zero and variance one. Euclidean distances computed from
pairs of class mean feature vectors were employed as the distance metric
in an agglomerative clustering method to create the dendrogram shown in
Figure 8.10. There are two nuclear protein clusters in the tree: Hmga1-2,
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Fig. 8.9. Subcellular location tree created by an average linkage agglomerative
hierarchical clustering algorithm for the 10 protein subcellular location patterns
from the 2D HeLa dataset. From reference [289].

Hmga1-1, Unknown-9, Hmgn2-1, and Unknown-8; Ewsh, Unknown-11, and
SimilarToSiahbp1. Two representative images were selected from these two
clusters (Figure 8.11). Apparently, one cluster is exclusively localized in the
nucleus while the other has some cytoplasmic distribution outside the nucleus,
which made these two nuclear protein clusters distinguishable.

To select the optimal number of clusters from Figure 8.10, we applied
a neural network classifier with one hidden layer and 20 hidden nodes to
classify the 46 clones by using the 14 SLF9 features. The average recall after
20 cross validations was 40%, which indicated that many clones were hardly
distinguishable. To choose a cutting threshold for the tree, we examined the
confusion matrix of the classifier and found that those clones separated below
2.8 z-scored Euclidean distance can hardly be distinguished by the classifier.
By choosing a cutting threshold of 2.8, the tree shown in Figure 8.10 can
be reduced to 12 clusters, which was consistent with the result obtained by
using the K-means algorithm and Akaike information criterion on the same
data. By grouping images from 46 clones to the new 12 clusters, the same
neural network gave an average performance of 71% across 12 classes.
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Fig. 8.10. Subcellular location tree created for 46 clones from the 3D 3T3 collection
by using 14 of the SLF9 features. The protein name (if known) is shown for
each clone, followed by the presumed location pattern from the relevant literature.
Independently derived clones in which the same protein was tagged are shown with
a hyphen followed by a number (e.g., Hmga1-2 is clone 2 tagged in Hmga1). From
reference [73].

Fig. 8.11. Two representative images selected from the two nuclear protein clusters
shown in Figure 8.10. (A) Hmga1-1. (B) Unknown-11. From reference [73].
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The second feature set we used for clustering the 46 clones was the 42-
dimensional SLF11, which contains 14 SLF9 features that do not require a
DNA label, 2 edge features, and 26 3D Haralick texture features. Just as for
supervised learning, data clustering can also benefit from feature selection.
Therefore, we employed stepwise discriminant analysis coupled with the same
neural network classifier used earlier to select the features from SLF11 that
can distinguish the 46 classes as well as possible. Figure 8.12 shows the
average classification results of sequential inclusion of features ranked by
SDA. The first 14 features ranked by SDA can give 70% average accuracy,
while a comparable 68% can be achieved by using the first 10 features.

Fig. 8.12. Determination of minimum number of features for adequate
discrimination of the 3D 3T3 clones. The average performance of a neural network
classifier after 20 cross validation trials is shown as a function of the number of
features used from those selected by stepwise discriminant analysis (SDA). From
reference [73].

By using the top 10 features selected from SLF11 by SDA, we ran the
same clustering algorithm on the 46 3T3 clones. Figure 8.13 shows a new tree
generated from clustering the same data by the new features. The previous
two nucleus protein clusters still remained mostly the same. The new clone
added in the second cluster, Unknown-7, has a hybrid location pattern in
both nucleus and cytoplasm, which agrees with our previous observation of
the distinction between the two clusters.

The tree created by clustering 3T3 clones from the CD tagging
project provides a systematic representation of observed subcellular location
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Fig. 8.13. Subcellular location tree created for 46 clones from the 3D 3T3 set by
using the top 10 features selected from SLF11 by SDA. The results shown are for
the same clones as in Figure 8.10. From reference [73].

patterns. By examining the tree, the characteristics of an unknown protein
may be deduced from nearby proteins with known functions and similar
location pattern. The sensitivity of the subcellular location features assures
the distinction and separation of patterns in the tree with subtle location
differences.

8.3 Conclusion

In this chapter, we have described the intensive application of machine
learning methods to a novel problem in biology. The successful application
of supervised learning, statistical analysis, and unsupervised clustering all
depended on informative features that were able to capture the essence
of protein subcellular location patterns in fluorescence microscope images.
Our automatic image interpretation system coupled with high-throughput
random-tagging and imaging techniques provide a promising and feasible
capability for decoding the subcellular location patterns of all proteins in a
given cell type, an approach we have termed “location proteomics.” The
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systematic approach we have described is also adaptable to other data
mining areas in bioinformatics, in which a successful system should be able
to address all the aspects of a learning problem, such as feature design
and extraction, feature selection, classifier choice, statistical analysis, and
unsupervised clustering.
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Chapter 9
Mining Chemical Compounds

Mukund Deshpande, Michihiro Kuramochi, and
George Karypis

Summary
In this chapter we study the problem of classifying chemical compound
datasets. We present a substructure-based classification algorithm that
decouples the substructure discovery process from the classification
model construction and uses frequent subgraph discovery algorithms
to find all topological and geometric substructures present in the
dataset. The advantage of this approach is that during classification
model construction, all relevant substructures are available allowing
the classifier to intelligently select the most discriminating ones. The
computational scalability is ensured by the use of highly efficient
frequent subgraph discovery algorithms coupled with aggressive feature
selection. Experimental evaluation on eight different classification
problems shows that our approach is computationally scalable and on
the average outperforms existing schemes by 10% to 35%.

9.1 Introduction

Discovering new drugs is an expensive and challenging process. Any new
drug should not only produce the desired response to the disease but should
do so with minimal side effects and be superior to the existing drugs on
the market. One of the key steps in the drug design process is to identify the
chemical compounds (widely referred to as “hit” compounds) that display the
desired and reproducible behavior against the disease [247] in a biological
experiment. The standard technique for discovering such compounds is to
evaluate them with a biological experiment, known as an assay. The 1990s
saw the widespread adoption of high-throughput screening (HTS), which
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uses highly automated techniques to conduct the biological assays and can
be used to screen a large number of compounds. Though in principle HTS
techniques can be used to test each compound against every biological assay,
it is never practically feasible for the following reasons. First, the number of
chemical compounds that have been synthesized or can be synthesized using
combinatorial chemistry techniques is extremely large. Evaluating this large
set of compounds using HTS can be prohibitively expensive. Second, not all
biological assays can be converted to high-throughput format. Third, in most
cases it is hard to find all the desirable properties in a single compound, and
chemists are interested in not just identifying the hits but studying what part
of the chemical compound leads to desirable behavior so that new compounds
can be rationally synthesized.

The goal of this chapter is to develop computational techniques based
on classification that can be used to identify the hit compounds. These
computational techniques can be used to replace or supplement the biological
assay techniques. One of the key challenges in developing classification
techniques for chemical compounds stems from the fact that the properties
of the compounds are strongly related to their chemical structure. However,
traditional machine learning techniques are suited to handling datasets
represented by multidimensional vectors or sequences and cannot handle the
structural nature of the chemical structures.

In recent years two classes of techniques have been developed for solving
the chemical compound classification problem. The first class builds a
classification model using a set of physicochemical properties derived from
the compounds structure, called quantitative structure-activity relationships
(QSAR) [14, 167, 168], whereas the second class operates directly on the
structure of the chemical compound and in the attempt to automatically
identify a small number of chemical substructures that can be used to
discriminate between the different classes [41, 99, 193, 236, 436]. A number
of comparative studies [222, 384] have shown that techniques based on
the automatic discovery of chemical substructures are superior to those
based on QSAR properties and require limited user intervention and domain
knowledge. However, despite their success, a key limitation of these techniques
is that they rely on heuristic search methods to discover these substructures.
Even though such approaches reduce the inherently high computational
complexity associated with these schemes, they may lead to suboptimal
classifiers in cases in which the heuristic search failed to uncover substructures
that are critical for the classification task.

In this chapter we present a substructure-based classifier that overcomes
the limitations associated with existing algorithms. One of the key ideas of
this approach is to decouple the substructure discovery process from the
classification model construction step and use frequent subgraph discovery
algorithms to find all chemical substructures that occur a sufficiently large
number of times. Once the complete set of these substructures has been
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identified, the algorithm then proceeds to build a classification model based
on them. The advantage of such an approach is that during classification
model construction, all relevant substructures are available, allowing the
classifier to intelligently select the most discriminating ones. To ensure that
such an approach is computationally scalable, we use recently developed [234,
236], highly efficient frequent subgraph discovery algorithms coupled with
aggressive feature selection to reduce the amount of time required to build
as well as to apply the classification model. In addition, we present a
substructure discovery algorithm that finds a set of substructures whose
geometry is conserved, further improving the classification performance of
the algorithm.

We experimentally evaluated the performance of these algorithms on
eight different problems derived from three publicly available datasets
and compared their performance against that of traditional QSAR-based
classifiers and existing substructure classifiers based on SUBDUE [84] and
SubdueCL [149]. Our results show that these algorithms, on the average,
outperform QSAR-based schemes by 35% and SUBDUE-based schemes by
10%.

The rest of the chapter is organized as follows. Section 9.2 provides some
background information related to chemical compounds, their activity, and
their representation. Section 9.3 provides a survey of the related research
in this area. Section 9.4 provides the details of the chemical compound
classification approach. Section 9.5 experimentally evaluates its performance
and compares it against other approaches. Finally, section 9.6 outlines
directions of future research and provides some concluding remarks.

9.2 Background

A chemical compound consists of different atoms held together via bonds
adopting a well-defined geometric configuration. Figure 9.1a represents the
chemical compound flucytosine from the DTP AIDS repository [107]. It
consists of a central aromatic ring and other elements like N, O, and F.
The representation shown in the figure is a typical graphical representation
that most chemists work with.

There are many different ways to represent chemical compounds. The
simplest representation is the molecular formula that lists the various
atoms making up the compound; the molecular formula for flucytosine is
C4H4FN3O. However, this representation is woefully inadequate for capturing
the structure of the chemical compound. It was recognized early on
that it was possible for two chemical compounds to have an identical
molecular formula but completely different chemical properties [139]. A
more sophisticated representation can be achieved using the SMILES [425]
representation; it not only represents the atoms but also represents the
bonds between different atoms. The SMILES representation for flucytosine
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Fig. 9.1. Chemical and graphical representation of flucytosine.

is Nc1nc(O)ncc1F. Though SMILES representation is compact, it is not
guaranteed to be unique; furthermore, the representation is quite restrictive
to work with [230].

The activity of a compound largely depends on its chemical structure
and the arrangement of different atoms in 3D space. As a result, effective
classification algorithms must be able to directly take into account the
structural nature of these datasets. In this chapter we represent each
compound as undirected graphs. The vertices of these graphs correspond
to the various atoms, and the edges correspond to the bonds between the
atoms. Each of the vertices and edges has a label associated with it. The
labels on the vertices correspond to the type of atoms and the labels on
the edges correspond to the type of bonds. As an example, Figure 9.1b
shows the representation of flucytosine as graph model. We will refer to
this representation as the topological graph representation of a chemical
compound. Note that such representations are quite commonly used by many
chemical modeling software applications and are referred as the connection
table for the chemical compound [247].

In addition, since chemical compounds have a physical three-dimensional
structure, each vertex of the graph has a 3D coordinate indicating the position
of the corresponding atom in 3D space. However, there are two key issues
that need to be considered when working with the compound’s 3D structure.
First, the number of experimentally determined molecular geometries is
limited (about 270,000 X-ray structures in the Cambridge Crystallographic
Database compared to 15 million known compounds). As a result, the 3D
geometry of a compound needs to be computationally determined, which
may introduce a certain amount of error. To address this problem, we use
the Corina [138] software package to compute the 3D coordinates for all the
chemical compounds in our datasets. Corina is a rule- and data-based system
that has been experimentally shown to predict the 3D structure of compounds
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with high accuracy. Second, each compound can have multiple low-energy
conformations (i.e., multiple 3D structures) that need to be taken into
account to achieve the highest possible classification performance. However,
due to time constraints, in this study we do not take into account these
multiple conformations but instead use the single low-energy conformation
that is returned by Corina’s default settings. However, as discussed in section
9.4.1, the presented approach for extracting geometric substructures can be
easily extended to cases in which multiple conformations are considered as
well. Nevertheless, despite this simplification, as our experiments in section
9.5 will show, incorporating 3D structure information leads to measurable
improvements in the overall classification performance. We will refer to this
representation as the geometric graph representation of a chemical compound.

The meaning of the various classes in the input dataset is application
dependent. In some applications, the classes will capture the extent to which a
particular compound is toxic, whereas in other applications they may capture
the extent to which a compound can inhibit (or enhance) a particular factor
and/or active site. In most applications, each of the compounds is assigned
to only one of two classes, which are commonly referred to as the positive and
negative classes. The compounds of the positive class exhibit the property in
question, whereas the compounds of the negative class do not. Throughout
this chapter we will be restricting ourselves to only two classes, though all
the techniques described here can be easily extended to multiclass as well as
multilabel classification problems.

Another important aspect of modeling chemical compounds is the naming
of single and double bonds inside aromatic rings. Typically in an aromatic
ring of a chemical compound, though the number of single and double bonds
is fixed, the exact position of double and single bonds is not fixed, because
of the phenomenon of resonance [139]. It is worth noting that the exact
position of double and single bond in an aromatic ring does not affect the
chemical properties of a chemical compound. To capture this uncertainty in
the position of single and double bonds, we represent all the bonds making up
the aromatic ring with a new bond type called the aromatic bond. Another
aspect of the chemical compounds is that the number of hydrogen bonds
connected to a particular carbon atom can usually be inferred from the bonds
connecting the carbon atom [139]. Therefore, in our representation we do not
represent the hydrogen atoms that are connected to the carbon atoms. Such
hydrogen atoms are referred as nonpolar hydrogen atoms. Note that these
transformations are widely used by many chemistry modeling tools and are
usually referred to as structure normalization [247].

9.3 Related Research

In the early 1960s, the pioneering work of Hansch et al. [167, 168]
demonstrated that the biological activity of a chemical compound is a
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function of its physicochemical properties. These physicochemical properties
are usually derived from the compound’s structure and are called quantitative
structure-activity relationships (QSAR). Examples of physicochemical
properties include the molecular weight, total energy, dipole moment, solvent
accessible area, and so on. Over the years a number of different QSAR
properties has been developed and they are used extensively to model
and analyze chemical compounds within the pharmaceutical industry.1 The
amount of time required to compute QSAR properties varies from property
to property. Some of them can be computed very fast (e.g., molecular
weight), while others require time-consuming numerical simulations (e.g.,
dipole moment, total energy) that can be performed only for small datasets.

In QSAR-based classification methods, each chemical compound is
transformed into a vector of numerical values corresponding to the various
QSAR properties. After this transformation, any traditional classifier capable
of handling numerical features can be used for the classification task.
Early research on QSAR-based classification methods focused primarily on
regression-based techniques [131, 167]; however, more sophisticated classifiers
have also been used. For example, Andrea and Kalayeh [15] show that neural
networks can achieve better accuracies over regression-based techniques,
whereas An and Wang [14] report that decision tree classifiers applied on
QSAR features outperform those based on neural networks and logistic
regression.

The key challenge in using QSAR-based approaches stems from the fact
that the classification performance relies, to a large extent, on the a priori
identification of the relevant QSAR properties that capture the structure-
activity relationships for the particular classification problem. Identifying this
relevant set of QSAR properties requires considerable domain expertise and
extensive experimentation. To overcome this problem, different techniques
have been developed that operate directly on the structure of the chemical
compound and try to automatically identify a small number of chemical
substructures that can be used to discriminate between the different classes.

One of the earlier approaches that follows this paradigm is based on
inductive logic programming (ILP) [283]. In this approach the chemical
compound is expressed using first-order logic. Each atom is represented as a
predicate consisting of atomID and the element, and a bond is represented as
a predicate consisting of two atomIDs. Using this representation, an ILP
system discovers rules (i.e., conjunction of predicates) that are good for
discriminating the different classes. Since these rules consist of predicates
describing atoms and bonds, they essentially correspond to substructures
that are present in the chemical compounds. The pioneering work in this
field was done by King et al. in the early 1990s [221, 222]. They applied
an ILP system, Golem [284], to study the behavior of 44 trimethoprin

1For example, GAUSSIAN, a widely used software tool for analyzing and
predicting chemical structures, contains over 50 QSAR properties.
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analogues and their observed inhibition of Escherichia coli dihydrofolate
reductase. They reported an improvement in classification accuracy over the
traditional QSAR-based models. Srinivasan et al. [384] present a detailed
comparison of the features generated by ILP with the traditional QSAR
features used for classifying chemical compounds. They show that for some
applications features discovered by ILP approaches lead to a significant lift in
the performance. Besides improved classification performance, an additional
advantage of these structure-based approaches is that the discovered rules
(i.e., substructures) can be easily understood by experts and could be used
to check the correctness of the model and to provide insights in the chemical
behavior of the compounds.

Though ILP-based approaches are quite powerful, the high computational
complexity of the underlying rule-induction system limits the size of the
dataset to which they can be applied. Furthermore, they tend to produce
rules consisting of relatively small substructures (usually three to four atoms
[95, 223]), limiting the size of the structural constraints that they impose
and hence affecting the classification performance. Another drawback of these
approaches is that in order to reduce their computational complexity, they
employ various heuristics to prune the explored search space [282], potentially
missing substructures that are important for the classification task. One
exception is the WARMR system [95, 223] that is specifically developed for
chemical compounds and discovers all possible substructures above a certain
frequency threshold. However, WARMR’s computational complexity is very
high and can only be used to discover substructures that occur with relatively
high frequency.

One of the fundamental reasons limiting the scalability of ILP-based
approaches is the first-order logic-based representation that they use. This
representation is much more powerful than is needed to model chemical
compounds and discover substructures. For this reason a number of
researchers have explored the much simpler graph-based representation of
the chemical compound’s topology and transformed the problem of finding
chemical substructures to that of finding subgraphs in this graph-based
representation [41, 193, 436]. Probably the most well-known approach is
the SUBDUE system [84, 180]. SUBDUE finds patterns that can effectively
compress the original input data based on the minimum description length
(MDL) principle by replacing those patterns with a single vertex. To narrow
the search space and improve its computational efficiency, SUBDUE uses a
heuristic beam search approach, which quite often results in failing to find
subgraphs that are frequent. The SUBDUE system was also later extended to
classify graphs and was referred to as SubdueCL [149]. In SubdueCL, instead
of using minimum description length as a heuristic, a measure similar to
confidence of a subgraph is used as a heuristic.

Finally, another heuristics-based scheme targeted for chemical compounds
is MOLFEA [230]. In this scheme each chemical compound is represented
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as a SMILES string and is thought of as sequence of SMILES objects.
This representation simplifies the problem to discovering frequently occurring
subsequences.

9.4 Classification Based on Frequent Subgraphs

The previous research on classifying chemical compounds (discussed in
section 9.3) has shown that techniques based on the automatic discovery of
chemical substructures are superior to those based on QSAR properties and
require limited user intervention and domain knowledge. However, despite
their success, a key limitation of both the ILP-based and the subgraph-
based techniques is that they rely on heuristic search methods to discover the
substructures to be used for classification. As discussed in section 9.3, even
though such approaches reduce the inherently high computational complexity
associated with the schemes, they may lead to suboptimal classifiers in cases
in which the heuristic search fails to uncover substructures that are critical
for the classification task.

To overcome this problem, we developed a classification algorithm for
chemical compounds that uses the graph-based representation and limits
the number of substructures that are pruned a priori. The key idea of
our approach is to decouple the substructure discovery process from the
classification model construction step and use frequent subgraph discovery
algorithms to find all chemical substructures that occur a sufficiently large
number of times. Once the complete set of substructures has been identified,
our algorithm then proceeds to build a classification model based on them.
To a large extent, this approach is similar in spirit to the recently developed
frequent-itemset-based classification algorithms [100, 251, 255] that have
been shown to outperform traditional classifiers that rely on heuristic search
methods to discover the classification rules.

The overall outline of our classification methodology is shown in Figure
9.2. It consists of three distinct steps: feature generation, feature selection,
and classification model construction. During the feature generation step,
the chemical compounds are mined to discover the frequently occurring
substructures that correspond to either topological or geometric subgraphs.
These substructures are then used as the features by which the compounds
are represented in the subsequent steps. During the second step, a small set
of features is selected so that the selected features can correctly discriminate
between the different classes present in the dataset. Finally, in the last step,
each chemical compound is represented using this set of features, and a
classification model is constructed. The rest of this section describes these
three steps in detail.
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Fig. 9.2. Frequent subgraph-based classification framework.

9.4.1 Feature Generation

Our classification algorithm finds substructures in a chemical compound
database using two different methods. The first method uses the topological
graph representation of each compound whereas the second method is based
on the corresponding geometric graph representation (discussed in section
9.2). In both these methods, our algorithm uses the topological or geometric
connected subgraphs that occur in at least σ% of the compounds to define
the substructures.

There are two important restrictions on the type of the substructures that
are discovered by our approach. The first has to do with the fact that we are
interested only in substructures that are connected, and it is motivated by the
fact that connectivity is a natural property of such patterns. The second has
to do with the fact that we are interested only in frequent substructures (as
determined by the value of σ), as this ensures that we do not discover spurious
substructures that will in general not be statistically significant. Furthermore,
this minimum support constraint also helps in making the problem of frequent
subgraph discovery computationally tractable.

Frequent topological subgraphs. Developing frequent subgraph discovery
algorithms is particularly challenging and computationally intensive as
graph and/or subgraph isomorphisms play a key role throughout the
computations. Nevertheless, in recent years, four different algorithms have
been developed capable of finding all frequently occurring subgraphs with
reasonable computational efficiency. These are the AGM algorithm developed
by Inokuchi et al. [193], the FSG algorithm developed by members of our
group [234], the chemical substructure discovery algorithm developed by
Borgelt and Berthold [41], and the gSpan algorithm developed by Yan and
Han [436]. The enabling factors to the computational efficiency of these
schemes have been (1) the development of efficient candidate subgraph
generation schemes that reduce the number of times the same candidate
subgraph is generated, (2) the use of efficient canonical labeling schemes
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to represent the various subgraphs, and (3) the use of various techniques
developed by the data mining community to reduce the number of times
subgraph isomorphism computations need to be performed.

In our classification algorithm we find the frequently occurring subgraphs
by using the FSG algorithm. FSG takes as input a database D of graphs
and a minimum support σ and finds all connected subgraphs that occur in
at least σ% of the graphs. FSG, initially presented in [234], with subsequent
improvements presented in [236], uses a breadth-first approach to discover
the lattice of frequent subgraphs. It starts by enumerating small frequent
graphs consisting of one and two edges and then proceeds to find larger
subgraphs by joining previously discovered smaller frequent subgraphs. The
size of these subgraphs is increased by adding one edge at a time. The lattice
of frequent patterns is used to prune the set of candidate patterns, and it only
explicitly computes the frequency of the patterns that survive this downward
closure pruning. Despite the inherent complexity of the problem, FSG
employs a number of sophisticated techniques to achieve high computational
performance. It uses a canonical labeling algorithm that fully makes use of
edge and vertex labels for fast processing and various vertex invariants to
reduce the complexity of determining the canonical label of a graph. These
canonical labels are then used to establish the identity and total order of
the frequent and candidate subgraphs, a critical step of redundant candidate
elimination and downward closure testing. It uses a sophisticated scheme
for candidate generation [236] that minimizes the number of times each
candidate subgraph is generated and also dramatically reduces the generation
of subgraphs that fail the downward closure test. Finally, for determining the
actual frequency of each subgraph, FSG reduces the number of subgraph
isomorphism operations by using TID lists [109, 365, 445, 446] to keep track
of the set of graphs that supported the frequent patterns discovered at the
previous level of the lattice. For every candidate, FSG takes the intersection
of TID lists of its parents and performs the subgraph isomorphism only on
the graphs contained in the resulting TID list. As the experiments presented
in section 9.5 show, FSG is able to scale to large datasets and low support
values.

Frequent geometric subgraphs. Topological substructures capture the
connectivity of atoms in the chemical compound, but they ignore the
3D shape (3D arrangement of atoms) of the substructures. For certain
classification problems the 3D shape of the substructure might be essential for
determining the chemical activity of a compound. For instance, the geometric
configuration of atoms in a substructure is crucial for its ability to bind to a
particular target [247]. For this reason we developed an algorithm that finds
all frequent substructures whose topology as well as geometry is conserved.

There are two important aspects specific to the geometric subgraphs
that need to be considered. First, since the coordinates of the vertices
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depend on a particular reference coordinate axis, we would like the discovered
geometric subgraphs to be independent of the coordinate axes; i.e., we are
interested in geometric subgraphs whose occurrences are translation and
rotation invariant. This dramatically increases the overall complexity of the
geometric subgraph discovery process, because we may need to consider
all possible geometric configurations of a single pattern. Second, while
determining if a geometric subgraph is contained in a bigger geometric
graph, we would like to allow some tolerance when we establish a match
between coordinates, ensuring that slight deviations in coordinates between
two identical topological subgraphs do not lead to the creation of two
geometric subgraphs. The amount of tolerance (r) should be a user-specified
parameter. The task of discovering such r-tolerant frequent geometric
subgraphs dramatically changes the nature of the problem. In traditional
pattern discovery problems such as finding frequent itemsets, sequential
patterns, and/or frequent topological graphs, there is a clear definition of
what a pattern is, given its set of supporting graphs. On the other hand, in
the case of r-tolerant geometric subgraphs, there are many different geometric
representations of the same pattern (all of which will be r-tolerant isomorphic
to each other). The problem becomes not only that of finding a pattern and
its support but also finding the right representative for this pattern. The
selection of the right representative can have a serious impact on correctly
computing the support of the pattern. For example, given a set of subgraphs
that are r-tolerant isomorphic to each other, the one that corresponds to
an outlier will tend to have a lower support than the one corresponding
to the center. These two aspects of geometric subgraphs makes the task of
discovering the full-fledged geometric subgraphs extremely hard [235].

To overcome this problem we developed a simpler, albeit less
discriminatory, representation for geometric subgraphs. We use a property
of a geometric graph called the average interatomic distance that is defined
as the average Euclidean distance between all pairs of atoms in the molecule.
Note that the average interatomic distance is computed between all pairs
of atoms irrespective of whether a bonds connects the atoms or not. The
average interatomic distance can be thought of as a geometric signature of a
topological subgraph. The geometric subgraph consists of two components,
a topological subgraph and an interval of average interatomic distance
associated with it. A geometric graph contains this geometric subgraph if
it contains the topological subgraph and the average interatomic distance of
the embedding (of the topological subgraph) is within the interval associated
with the geometric subgraph. Note that this geometric representation is also
translation and rotation invariant, and the width of the interval determines
the tolerance displayed by the geometric subgraph. We are interested in
discovering geometric subgraphs that occur in more than σ% of the graphs
and whose interval of average interatomic distance is bound by r.
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Since a geometric subgraph contains a topological subgraph, for the
geometric subgraph to be frequent, the corresponding topological subgraph
has to be frequent as well. This allows us to take advantage of the existing
approach to discovering topological subgraphs. We modify the frequency-
counting stage of the FSG algorithm as follows. If a subgraph g is contained
in a graph t, then all possible embeddings of g in t are found and the average
interatomic distance for each of these embeddings is computed. As a result,
at the end of the frequent subgraph discovery, each topological subgraph
has a list of average interatomic distances associated with it. Each one of
the average interatomic distances corresponds to one of the embeddings, i.e.,
a geometric configuration of the topological subgraph. This algorithm can
be easily extended to cases in which there are multiple 3D conformations
associated with each chemical compound (as discussed in section 9.2) by
simply treating each distinct conformation as a different chemical compound.

The task of discovering geometric subgraphs now reduces to identifying
geometric configurations that are frequent enough, i.e., identify intervals of
average interatomic distances such that each interval contains the minimum
number geometric configurations (it occurs in σ% of the graphs) and the
width of the interval is smaller than the tolerance threshold (r). This task
can be thought of as 1D clustering on the vector of average interatomic
distances so that each cluster contains items above the minimum support
and the spread of each cluster is bounded by the tolerance r. Note that not
all items will belong to a valid cluster as some of them will be infrequent.
In our experiments we set the value of r to be equal to half the minimum
distance between any two pairs of atoms in the compounds.

To find such clusters, we perform agglomerative clustering on the vector
of average interatomic distance values. The distance between any two average
interatomic distance values is defined as the difference in their numeric values.
To ensure that we get the largest possible clusters, we use the maximum-link
criterion function for deciding which two clusters should be merged [214].
The process of agglomeration is continued until the interval containing all
the items in the cluster is below the tolerance threshold (r). When we reach
a stage where further agglomeration would increase the spread of the cluster
beyond the tolerance threshold, we check the number of items contained in
the cluster. If the number of items is above the support threshold, then the
interval associated with this cluster is considered as a geometric feature. Since
we are clustering one-dimensional datasets, the clustering complexity is low.
Some examples of the distribution of the average interatomic distance values
and the associated clusters are shown in Figure 9.3. Note that the average
interatomic distance values of the third example are uniformly spread and
lead to no geometric subgraph.

Note that this algorithm for computing geometric subgraphs is
approximate in nature for two reasons. First, the average interatomic distance
may map two different geometric subgraphs to the same average interatomic
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Fig. 9.3. Some examples of the one-dimensional clustering of average interatomic
distance values.

distance value. Second, the clustering algorithm may not find the complete
set of geometric subgraphs that satisfy the r tolerance. Nevertheless, as our
experiments in section 9.5 show, the geometric subgraphs discovered by this
approach improve the classification accuracy of the algorithm.

Additional considerations. Even though FSG provides the general
functionality required to find all frequently occurring substructures in
chemical datasets, a number of issues need to be addressed before FSG
can be applied as a black-box tool for feature discovery in the context
of classification. One issue is selecting the right value for σ, the support
constraint used for discovering frequent substructures. The value of σ controls
the number of subgraphs discovered by FSG. Choosing a good value of σ is
especially important for a dataset containing classes of significantly different
sizes. In such cases, to ensure that FSG is able to find features that are
meaningful for all the classes, it must use a support that depends on the size
of the smaller class.

For this reason we first partition the complete dataset, using the class
label of the examples, into class-specific datasets. We then run FSG on each
of these class datasets. This partitioning of the dataset ensures that sufficient
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subgraphs are discovered for class labels that occur rarely in the dataset.
Next, we combine subgraphs discovered from each class dataset. After this
step, each subgraph has a vector that contains the frequency with which it
occurs in each class.

9.4.2 Feature Selection

The frequent subgraph discovery algorithm described in section 9.4.1
discovers all the substructures (topological or geometric) that occur above a
certain support constraint (σ) in the dataset. Though the discovery algorithm
is computationally efficient, it can generate a large number of features. A large
number of features is detrimental for two reasons. First, it could increase the
time required to build the model. But more important, a large number of
features can increase the time required to classify a chemical compound, as
we need to first identify which of the discovered features it contains before
we can apply the classification model. Determining whether a compound
contains a particular feature or not can be computationally expensive as it
may require a subgraph isomorphism operation. This problem is especially
critical in the drug discovery process where the classification model is learned
on a small set of chemical compounds and is then applied to large chemical
compound libraries containing millions of compounds.

One way of solving this problem is to follow a heuristic subgraph discovery
approach (similar in spirit to previously developed methods [84, 149]) in
which during the subgraph discovery phase itself, the discriminatory ability of
a particular subgraph is determined, and the discovery process is terminated
as soon as a subgraph is generated that is less discriminatory than any
of its subgraphs. By following this approach, the total number of features
will be substantially reduced, achieving the desired objective. However, the
limitation to such an approach is that it may fail to discover and use highly
discriminatory subgraphs. This is because the discriminatory ability of a
subgraph does not (in general) consistently increase as a function of its
size, and subgraphs that appear to be poor discriminators may become
very discriminatory by increasing their size. For this reason, to develop an
effective feature selection method, we use a scheme that first finds all frequent
subgraphs and then selects among them a small set of discriminatory features.
The advantage of this approach is that during feature selection all frequent
subgraphs are considered regardless of when they were generated and whether
or not they contain less or more discriminatory subgraphs.

The feature selection scheme is based on the sequential covering paradigm
used to learn rule sets [275]. To apply this algorithm, we assume that each
discovered substructure corresponds to a rule, with the class label of the
substructure as the target attribute. Such rules are referred to as class rules
in [255]. The sequential covering algorithm takes as input a set of examples
and the features discovered from these examples, and it iteratively applies the
feature selection step. In this step the algorithm selects the feature that has
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the highest estimated accuracy. After selecting this feature, all the examples
containing this feature are eliminated and the feature is marked as selected.
In the next iteration of the algorithm, the same step is applied but on a
smaller set of examples. The algorithm continues in an iterative fashion until
either all the features are selected or all the examples are eliminated.

In this chapter we use a computationally efficient implementation of the
sequential covering algorithm known as CBA [255]. This algorithm proceeds
by first sorting the features based on confidence and then applying the
sequential covering algorithm on the sorted set of features. One of the
advantages of this approach is that it requires a minimal number of passes
on the dataset and hence is very scalable. To obtain better control over the
number of selected features, we use an extension of the sequential covering
scheme known as classification based on multiple rules (CMAR) [251]. In this
scheme, instead of removing the example after it is covered by the selected
feature, the example is removed only if it is covered by δ selected features. The
number of selected rules increases as the value of δ increases; an increase in
the number of features usually translates into an improvement in the accuracy
as more features are used to classify a particular example. The value of δ is
specified by the user and provides a means to the user for controlling the
number of features used for classification.

9.4.3 Classification Model Construction

Our algorithm treats each subgraph discovered in the previous step as a
feature and represents the chemical compound as a frequency vector. The
ith entry of this vector is equal to the number of times (frequency) that
feature occurs in the compound’s graph. This mapping into the feature space
of frequent subgraphs is performed for both the training and the test dataset.
Note that the frequent subgraphs were identified by mining only the graphs
of the chemical compounds in the training set. However, the mapping of the
test set requires that we check each frequent subgraph against the graph
of the test compound using subgraph isomorphism. Fortunately, the overall
process can be substantially accelerated by taking into account the frequent
subgraph lattice that is also generated by FSG. In this case, we traverse the
lattice from top to bottom and visit only the child nodes of a subgraph if
that subgraph is isomorphic to the chemical compound.

Once the feature vectors for each chemical compound have been built,
any one of the existing classification algorithms can potentially be used for
classification. However, the characteristics of the transformed dataset and
the nature of the classification problem itself tends to limit the applicability
of certain classes of classification algorithms. In particular, the transformed
dataset will most likely be high dimensional, and second, it will be sparse,
in the sense that each compound will have only a few of these features and
each feature will be present in only a few of the compounds. Moreover, in
most cases the positive class will be much smaller than the negative class,
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making it unsuitable for classifiers that primarily focus on optimizing the
overall classification accuracy.

In our study we built the classification models using support vector
machines (SVMs) [411], as they are well suited for operating in such sparse
and high-dimensional datasets. An additional advantage of SVM is that it
allows us to directly control the cost associated with the misclassification of
examples from the different classes [278]. This allows us to associate a higher
cost for the misclassification of positive instances, thus biasing the classifier
to learn a model that tries to increase the true positive rate at the expense
of increasing the false positive rate.

9.5 Experimental Evaluation

We experimentally evaluated the performance of our classification algorithm
and compared it against that achieved by earlier approaches on a variety of
chemical compound datasets. The datasets, experimental methodology, and
results are described in subsequent sections.

9.5.1 Datasets

We used three different publicly available datasets to derive a total of eight
different classification problems. The first dataset was initially used as a
part of the Predictive Toxicology Evaluation Challenge [383] which was
organized as a part of PKDD/ECML 2001 Conference.2 It contains data
published by the U.S. National Institute for Environmental Health Sciences,
consisting of bioassays of different chemical compounds on rodents to study
the carcinogenicity (cancer inducing) properties of the compounds [383]. The
goal was to estimate the carcinogenicity of different compounds on humans.
Each compound is evaluated on four kinds of laboratory animals (male mice,
female mice, male rats, female rats) and is assigned four class labels each
indicating the toxicity of the compound for that animal. There are four
classification problems, one corresponding to each of the rodents, and they
will be referred as P1, P2, P3, and P4.

The second dataset was obtained from the National Cancer Institute’s
DTP AIDS Antiviral Screen program [107, 230].3 Each compound in the
dataset is evaluated for evidence of anti-HIV activity. The screen utilizes a
soluble formazan assay to measure protection of human CEM cells from HIV-
1 infection [426]. Compounds able to provide at least 50% protection to the
CEM cells were retested. Compounds that provided at least 50% protection
on retest were listed as moderately active (CM, confirmed moderately active).
Compounds that reproducibly provided 100% protection were listed as

2http://www.informatik.uni-freiburg.de/˜ml/ptc/.
3http://dtp.nci.nih.gov/docs/aids/aids data.html.
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confirmed active (CA). Compounds neither active nor moderately active were
listed as confirmed inactive (CI). We formulated three classification problems
on this dataset. In the first problem we consider only confirmed active (CA)
and moderately active (CM) compounds and then build a classifier to separate
these two compounds; this problem is referred as H1. For the second problem
we combine moderately active (CM) and confirmed active (CA) compounds
to form one set of active compounds, then build a classifier to separate these
active and confirmed inactive compounds; this problem is referred as H2. In
the last problem we use only confirmed active (CA) and confirmed inactive
compounds and build a classifier to categorize these two compounds; this
problem is referred as H3.

The third dataset was obtained from the Center for Computational Drug
Discovery’s anthrax project at the University of Oxford [330]. The goal
of this project was to discover small molecules that would bind with the
heptameric protective antigen component of the anthrax toxin and prevent it
from spreading its toxic effects. A library of small-sized chemical compounds
was screened to identify a set of chemical compounds that could bind with the
anthrax toxin. The screening was done by computing the binding free energy
for each compound using numerical simulations. The screen identified a set of
12,376 compounds that could potentially bind to the anthrax toxin and a set
of 22,460 compounds that were unlikely to bind to the chemical compound.
The average number of vertices in this dataset is 25 and the average number
of edges is also 25. We used this dataset to derive a two-class classification
problem whose goal is to correctly predict whether or not a compound will
bind the anthrax toxin or not. This classification problem is referred to as
A1.

Some important characteristics of these datasets are summarized in
Table 9.1. The right-hand side of the table displays the class distribution
for different classification problems; for each problem the table displays
the percentage of positive class found in the dataset for that classification
problem. Note that both the DTP-AIDS and the anthrax datasets are quite
large, containing 42,687 and 34,836 compounds, respectively. Moreover, in the
case of DTP-AIDS, each compound is also quite large, having on an average
46 atoms and 48 bonds.

9.5.2 Experimental Methodology and Metrics

The classifications results were obtained by performing five-way cross
validation on the dataset, ensuring that the class distribution in each fold is
identical to the original dataset. For the SVM classifier we used the SVMLight
library [206]. All the experiments were conducted on a 1500MHz Athlon MP
processor with 2 GB of memory.

Since the positive class is significantly smaller in size than the negative
class, using accuracy to judge a classifier would be incorrect. To get a better
understanding of the classifier performance for different cost settings, we



206 Data Mining in Bioinformatics

Table 9.1. Characteristics of the various datasets. N is the number of compounds
in the database. N̄A and N̄B are the average number of atoms and bonds in
each compound. L̄A and L̄B are the average number of atom and bond types in
each dataset; max NA/min NA and max NB/min NB are the maximum/minimum
number of atoms and bonds over all the compounds in each dataset.

Toxic. Aids Anthrax Class dist. (% +ve class)
N 417 42,687 34,836 Toxicology
N̄A 25 46 25 P1: Male mice 38.3%
N̄B 26 48 25 P2: Female mice 40.9%
L̄A 40 82 25 P3: Male rats 44.2%
L̄B 4 4 4 P4: Female rats 34.4%
max NA 106 438 41 AIDS
min NA 2 2 12 H1: CA/CM 28.1%
max NB 1 276 44 H2: (CA+CM)/CI 3.5%
min NB 85 1 12 H3: CA/CI 1.0%

Anthrax
A1: active/inactive 35%

obtain the ROC curve [319] for each classifier. The ROC curve plots the false
positive rate (x axis) versus the true positive rate (y axis) of a classifier; it
displays the performance of the classifier without regard to class distribution
or error cost. Two classifiers are compared by comparing the area under
their respective ROC curves, a larger area under the curve indicating better
performance. The area under the ROC curve will be referred by the parameter
A.

9.5.3 Results

Varying minimum support. The key parameter of the proposed frequent
substructure-based classification algorithm is the choice of the minimum
support (σ) used to discover the frequent substructures (either topological or
geometric). To evaluate the sensitivity of the algorithm on this parameter,
we performed a set of experiments in which we varied σ from 10% to 20% in
5% increments. The results of these experiments are shown in Table 9.2 for
both topological and geometric substructures.

From Table 9.2 we observe that as we increase σ, the classification
performance for most datasets tends to degrade. However, in most cases this
degradation is gradual and correlates well with the decrease on the number
of substructures that were discovered by the frequent subgraph discovery
algorithms. The only exception is the H2 problem for which the classification
performance (as measured by ROC) degrades substantially as we increase the
minimum support from 10% to 20%. Specifically, in the case of topological
subgraphs, the performance drops from 70.1 down to 59.0, and in the case of
geometric subgraphs it drops from 76.0 to 58.1.

These results suggest that lower values of support are in general better
as they lead to better classification performance. However, as the support
decreases, the number of discovered substructures and the amount of time
required increase. Thus, depending on the dataset, some experimentation
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Table 9.2. Varying minimum support threshold (σ). A denotes the area under the
ROC curve and Nf denotes the number of discovered frequent subgraphs.

D σ=10.0% σ = 15.0% σ = 20.0%
Topo. Geom. Topo. Geom. Topo. Geom.
A Nf A Nf A Nf A Nf A Nf A Nf

P1 66.0 1211 65.5 1317 66.0 513 64.1 478 64.4 254 60.2 268
P2 65.0 967 64.0 1165 65.1 380 63.3 395 64.2 217 63.1 235
P3 60.5 597 60.7 808 59.4 248 61.3 302 59.9 168 60.9 204
P4 54.3 275 55.4 394 56.2 173 57.4 240 57.3 84 58.3 104
H1 81.0 27034 82.1 29554 77.4 13531 79.2 8247 78.4 7479 79.5 7700
H2 70.1 1797 76.0 3739 63.6 307 62.2 953 59.0 139 58.1 493
H3 83.9 27019 89.5 30525 83.6 13557 88.8 11240 84.6 7482 87.7 7494
A1 78.2 476 79.0 492 78.2 484 77.6 332 77.1 312 76.1 193

Dset Optimized σ
Topo. Geom. Per class Timep

A Nf A Nf σ (sec)
P1 65.5 24510 65.0 23612 3.0, 3.0 211
P2 67.3 7875 69.9 12673 3.0, 3.0 72
P3 62.6 7504 64.8 10857 3.0, 3.0 66
P4 63.4 25790 63.7 31402 3.0, 3.0 231
H1 81.0 27034 82.1 29554 10.0, 10.0 137
H2 76.5 18542 79.1 29024 10.0, 5.0 1016
H3 83.9 27019 89.5 30525 10.0, 10.0 392
A1 81.7 3054 82.6 3186 5.0, 3.0 145

may be required to select the proper value of the support that balances
these conflicting requirements (i.e., low support but reasonable number of
substructures).

In our study we performed such experimentation. For each dataset we kept
decreasing the value of support down to the point after which the number
of features that were generated was too large to be efficiently processed
by the SVM library. The resulting support values, number of features, and
associated classification performance are shown in Table 9.2 under the header
“Optimized σ.” Note that for each problem two different support values are
displayed corresponding to the supports that were used to mine the positive
and negative class, respectively. Also, the last column shows the amount of
time required by FSG to find the frequent subgraphs and provides a good
indication of the computational complexity at the feature discovery phase of
our classification algorithm.

Comparing the ROC values obtained in these experiments with those
obtained for σ = 10%, we can see that as before, the lower support values
tend to improve the results, with measurable improvements for problems in
which the number of discovered substructures increased substantially. In the
rest of our experimental evaluation we will be using the frequent subgraphs
that were generated using these values of support.

Varying misclassification costs. Since the number of positive examples is
in general much smaller than the number of negative examples, we performed
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a set of experiments in which the misclassification cost associated with each
positive example was increased to match the number of negative examples.
That is, if n+ and n− are the number of positive and negative examples,
respectively, the misclassification cost β was set equal to (n−/n+ − 1) (so
that n− = βn+). We refer to this value of β as the EqCost value. The
classification performance achieved by our algorithm using either topological
or geometric subgraphs for β = 1.0 and β = EqCost is shown in Table 9.3.
Note that the β = 1.0 results are the same with those presented in Table 9.2.

Table 9.3. Area under the ROC curve obtained by varying the misclassification
cost. β = 1.0 indicates the experiments in which each positive and negative example
had a weight of one, and β = EqCost indicates the experiments in which the
misclassification cost of the positive examples was increased to match the number
of negative examples.

Dataset Topo Geom
β = 1.0 β = EqCost β = 1.0 β = EqCost

P1 65.5 65.3 65.0 66.7
P2 67.3 66.8 69.9 69.2
P3 62.6 62.6 64.8 64.6
P4 63.4 65.2 63.7 66.1
H1 81.0 79.2 82.1 81.1
H2 76.5 79.4 79.1 81.9
H3 83.9 90.8 89.5 94.0
A1 81.7 82.1 82.6 83.0

From the results in this table we can see that, in general, increasing the
misclassification cost so that it balances the size of positive and negative
class tends to improve the classification accuracy. When β = EqCost,
the classification performance improves for four and five problems for the
topological and geometric subgraphs, respectively. Moreover, in the cases in
which the performance decreased, that decrease was quite small, whereas the
improvements achieved for some problem instances (e.g., P4, H1, and H2)
were significant. In the rest of our experiments we will focus only on the
results obtained by setting β = EqCost.

Feature selection. We evaluated the performance of the feature selection
scheme based on sequential covering (described in section 9.4.2) by
performing a set of experiments in which we varied the parameter δ that
controls the number of times an example must be covered by a feature before
it was removed from the set of yet to be covered examples. Table 9.4 displays
the results of these experiments. The results in the column labeled “Original”
show the performance of the classifier without any feature selection. These
results are identical to those shown in Table 9.3 for β = EqCost and are
included here to make comparisons easier.

Two key observations can be made by studying the results in this table.
First, as expected, the feature selection scheme is able to substantially reduce
the number of features. In some cases the number of features that was selected
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Table 9.4. Results obtained using feature selection based on sequential rule
covering. δ specifies the number of times each example needs to be covered before it
is removed, A denotes the area under the ROC curve, and Nf denotes the number
of features that were used for classification.

Topological features
Dataset Original δ = 1 δ = 5 δ = 10 δ = 15

A Nf A Nf A Nf A Nf A Nf

P1 65.3 24510 65.4 143 66.4 85 66.5 598 66.7 811
P2 66.8 7875 69.5 160 69.6 436 68.0 718 67.5 927
P3 62.6 7504 68.0 171 65.2 455 64.2 730 64.5 948
P4 65.2 25790 66.3 156 66.0 379 64.5 580 64.1 775
H1 79.2 27034 78.4 108 79.2 345 79.1 571 79.5 796
H2 79.4 18542 77.1 370 78.0 1197 78.5 1904 78.5 2460
H3 90.8 27019 88.4 111 89.6 377 90.0 638 90.5 869
A1 82.1 3054 80.6 620 81.4 1395 81.5 1798 81.8 2065

Geometric features
Dataset Original δ = 1 δ = 5 δ = 10 δ = 15

A Nf A Nf A Nf A Nf A Nf

P1 66.7 23612 68.3 161 68.1 381 67.4 613 68.7 267
P2 69.2 12673 72.2 169 73.9 398 73.1 646 73.0 265
P3 64.6 10857 71.1 175 70.0 456 71.0 241 66.7 951
P4 66.1 31402 68.8 164 69.7 220 67.4 609 66.2 819
H1 81.1 29554 80.8 128 81.6 396 81.9 650 82.1 885
H2 81.9 29024 80.0 525 80.4 1523 80.6 2467 81.2 3249
H3 94.0 30525 91.3 177 92.2 496 93.1 831 93.2 1119
A1 83.0 3186 81.0 631 82.0 1411 82.4 1827 82.7 2106

decreased by almost two orders of magnitude. Also, as δ increases, the number
of retained features increases; however, this increase is gradual. Second, the
overall classification performance achieved by the feature selection scheme
when δ ≥ 5 is quite comparable to that achieved with no feature selection.
The actual performance depends on the problem instance and whether or
not we use topological or geometric subgraphs. In particular, for the first
four problems (P1, P2, P3, and P4) derived from the PTC dataset, the
performance actually improves with feature selection. Such improvements are
possible even in the context of SVM-based classifiers as models learned on
lower dimensional spaces will tend to have better generalization ability [100].
Also note that for some datasets the number of features decreases as δ
increases. Even though this is counterintuitive, it can happen in the cases
in which due to a higher value of δ, a feature that would have been skipped
is now included in the set. If this newly included feature has relatively high
support, it will contribute to the coverage of many other features. As a result,
the desired level of coverage can be achieved without the inclusion of other
lower-support features. Our analysis of the selected feature sets showed that
for the instances in which the number of features decreases as δ increases,
the selected features have indeed higher average support.

Topological versus geometric subgraphs. The various results shown
in Tables 9.2–9.4 also provide an indication on the relative performance
of topological versus geometric subgraphs. In almost all cases, the classifier
that is based on geometric subgraphs outperforms that based on topological
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subgraphs. For some problems, the performance advantage is marginal,
whereas for other problems, geometric subgraphs lead to measurable
improvements in the area under the ROC curve. For example, if we consider
the results shown in Table 9.3 for β = EqCost, we can see the geometric
subgraphs lead to improvements that are at least 3% or higher for P2, P3,
and H3, and the average improvement over all eight problems is 2.6%. As
discussed in section 9.4.1, these performance gains are due to the fact that
conserved geometric structure is a better indicator than just its topology of
a chemical compound’s activity.

9.5.4 Comparison with Other Approaches

We compared the performance of our classification algorithm with the
performance achieved by the QSAR-based approach and the approach that
uses the SUBDUE system to discover a set of substructures.

Comparison with QSAR. As discussed in section 9.3, there is a wide
variety of QSAR properties, each of which captures certain aspects of a
compound’s chemical activity. For our study, we have chosen a set of 18 QSAR
properties that are good descriptors of the chemical activity of a compound,
and most of them have been previously used for classification purposes [14].
A brief description of these properties is given in Table 9.5. We used two
programs to compute these attributes: the geometric attributes, like solvent-
accessible area, total accessible area/volume, total Van der Waal’s accessible
area/volume, were computed using the program SASA [246]; the remaining
attributes were computed using Hyperchem software.

Table 9.5. QSAR properties.

Property Dim. Property Dim.
Solvent accessible area Å2 Moment of inertia none
Total accessible area Å2 Total energy kcal/mol
Total accessible volume Å3 Bend energy kcal/mol
Total Van der Waal’s area Å2 Hbond energy kcal/mol
Total Van der Waal’s volume Å3 Stretch energy kcal/mol
Dipole moment Debye Nonbond energy kcal/mol
Dipole moment comp. (X, Y, Z) Debye Estatic energy kcal/mol
Heat of formation Debye Torsion energy kcal/mol
Multiplicity Kcal Quantum total charge eV

We used two different algorithms to build classification models based on
these QSAR properties. The first is the C4.5 decision tree algorithm [324] that
has been shown to produce good models for chemical compound classification
based on QSAR properties [14], and the second is the SVM algorithm that
was used to build the classification models in our frequent substructure-based
approach. Since the range of values of the different QSAR properties can
be significantly different, we first scaled them to be in the range of [0, 1]
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prior to building the SVM model. We found that this scaling resulted in
some improvements in the overall classification results. Note that C4.5 is not
affected by such scaling.

Table 9.6 shows the results obtained by the QSAR-based methods for the
different datasets. The values shown for SVM correspond to the area under
the ROC curve and can be directly compared with the corresponding values
obtained by our approaches (Tables 9.2–9.4). Unfortunately, since C4.5 does
not produce a ranking of the training set based on its likelihood of being
in the positive class, it is quite hard to obtain the ROC curve. For this
reason, the values shown for C4.5 correspond to the precision and recall of
the positive class for the different datasets. Also, to make the comparisons
between C4.5 and our approach easier, we also computed the precision of our
classifier at the same value of recall as that achieved by C4.5. These results
are shown under the columns labeled “Freq. sub. prec.” for both topological
and geometric features and were obtained from the results shown in Table 9.3
for β = EqCost. Note that the QSAR results for both SVM and C4.5 were
obtained using the same cost-sensitive learning approach.

Table 9.6. Performance of the QSAR-based classifier.

Dataset SVM C4.5 Freq. sub. prec.
A Precision Recall Topo Geom

P1 60.2 0.4366 0.1419 0.6972 0.6348
P2 59.3 0.3603 0.0938 0.8913 0.8923
P3 55.0 0.6627 0.1275 0.7420 0.7427
P4 45.4 0.2045 0.0547 0.6750 0.8800
H1 64.5 0.5759 0.1375 0.7347 0.7316
H2 47.3 0.6282 0.4071 0.7960 0.7711
H3 61.7 0.5677 0.2722 0.7827 0.7630
A1 49.4 0.5564 0.3816 0.7676 0.7798

Comparing both the SVM-based ROC results and the precision/recall
values of C4.5, we can see that our approach substantially outperforms
the QSAR-based classifier. In particular, our topological subgraph-based
algorithm does 35% better compared to SVM-based QSAR and 72% better
in terms of the C4.5 precision at the same recall values. Similar results hold
for the geometric subgraph-based algorithm. These results are consistent with
those observed by other researchers [222, 384] that showed that substructure-
based approaches outperform those based on QSAR properties.

Comparison with SUBDUE and SubdueCL. Finally, to evaluate the
advantage of using the complete set of frequent substructures over existing
schemes that are based on heuristic substructure discovery, we performed
a series of experiments in which we used the SUBDUE system to find the
substructures and then used them for classification. Specifically, we performed
two sets of experiments. In the first set, we obtained a set of substructures
using the standard MDL-based heuristic substructure discovery approach of
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Table 9.7. Performance of the SUBDUE and SubdueCL-based approaches.

Dataset SUBDUE SubdueCL
A Nf Timep A Nf Timep

P1 61.9 1288 303sec 63.5 2103 301sec
P2 64.2 1374 310sec 63.3 2745 339sec
P3 57.4 1291 310sec 59.6 1772 301sec
P4 58.5 1248 310sec 60.8 2678 324sec
H1 74.2 1450 1,608sec 73.8 960 1002sec
H2 58.5 901 232,006sec 65.2 2999 476,426sec
H3 71.3 905 178,343sec 77.5 2151 440,416sec
A1 75.3 983 56,056sec 75.9 1094 31,177sec

SUBDUE [180]. In the second set, we used the substructures discovered by the
more recent SubdueCL algorithm [149] that guides the heuristic beam search
using a scheme that measures how well a subgraph describes the positive
examples in the dataset without describing the negative examples.

Even though there are a number of parameters controlling SUBDUE’s
heuristic search algorithm, the most critical among them are the width
of the beam search, the maximum size of the discovered subgraph, and
the total number of subgraphs to be discovered. In our experiments, we
spent a considerable amount of time experimenting with these parameters to
ensure that SUBDUE was able to find a reasonable number of substructures.
Specifically, we changed the width of the beam search from 4 to 50 and
set the other two parameters to high numeric values. Note that in the case
of SubdueCL, to ensure that the subgraphs were discovered that described
all the positive examples, the subgraph discovery process was repeated by
increasing the value of the beam width at each iteration and removing the
positive examples that were covered by subgraphs.

Table 9.7 shows the performance achieved by SUBDUE and SubdueCL on
the eight different classification problems along with the number of subgraphs
it generated and the amount of time it required to find these subgraphs. These
results were obtained by using the subgraphs discovered by either SUBDUE
or SubdueCL as features in an SVM-based classification model. Essentially,
our SUBDUE and SubdueCL classifiers have the same structure as our
frequent subgraph-based classifiers, the only difference being that the features
now correspond to the subgraphs discovered by SUBDUE and SubdueCL.
Moreover, to make the comparisons as fair as possible, we used β = EqCost
as the misclassification cost. We also performed another set of experiments in
which we used the rule-based classifier produced by SubdueCL. The results
of this scheme were inferior to those produced by the SVM-based approach
and we do not report them here.

Comparing SUBDUE with SubdueCL, we can see that the latter achieves
better classification performance, consistent with the observations made
by other researchers [149]. Comparing the SUBDUE and SubdueCL-based
results with those obtained by our approach (Tables 9.2–9.4), we can see that
in almost all cases both our topological and geometric frequent subgraph-
based algorithms lead to substantially better performance. This is true both
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in the cases in which we performed no feature selection and in the cases
in which we used the sequential covering-based feature selection scheme. In
particular, comparing the SubdueCL results against the results shown in
Table 9.4 without any feature selection, we can see that on the average, our
topological and geometric subgraph-based algorithms do 9.3% and 12.2%
better, respectively. Moreover, even after feature selection with δ = 15 that
results in a scheme that has a comparable number of features to those used by
SubdueCL, our algorithms are still better by 9.7% and 13.7%, respectively.
Finally, if we compare the amount of time required by either SUBDUE
or SubdueCL to that required by the FSG algorithm to find all frequent
subgraphs (Table 9.2), we can see that despite the fact that we are finding
the complete set of frequent subgraphs, our approach requires substantially
less time.

9.6 Conclusions and Directions for Future Research

In this chapter we presented a highly effective algorithm for classifying
chemical compounds based on frequent substructure discovery that can scale
to large datasets. Our experimental evaluation showed that our algorithm
leads to substantially better results than those obtained with existing
QSAR- and substructure-based methods. Moreover, besides this improved
classification performance, the substructure-based nature of this scheme
provides chemists with valuable information as to which substructures are
most critical for the classification problem at hand. For example, Figure 9.4
shows the three most discriminating substructures for the PTC, DTP AIDS,
and anthrax datasets that were obtained by analyzing the decision hyperplane
produced by the SVM classifier. A chemist can then use this information to
understand the models and potentially use it to design better compounds.

The classification algorithms presented in this chapter can be improved
along three different directions. First, as already discussed in section 9.2,
our current geometric graph representation utilizes a single conformation
of the chemical compound, and we believe that the overall classification
performance can be improved by using all possible low-energy conformations.
Such conformations can be obtained from existing 3D coordinate prediction
software, and as discussed in section 9.4.1, they can be easily incorporated
in our existing framework. Second, our current feature selection algorithms
focus only on whether or not a particular substructure is contained in a
compound; they do not take into account how these fragments are distributed
over different parts of the molecule. Better feature selection algorithms can be
developed by taking this information into account so that to ensure that the
entire (or most of) molecule is covered by the selected features. Third, even
though the proposed approaches significantly outperformed that based on
QSAR, our analysis showed that there is a significant difference as to which
compounds are correctly classified by the substructure- and QSAR-based
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Fig. 9.4. Three most discriminating substructures for the (a) PTC, (b) AIDS, and
(c) anthrax datasets.

approaches. For example, Figure 9.5 shows the overlap among the different
correct predictions produced by the geometric, topological, and QSAR-based
methods at different cutoff values for the anthrax dataset. From these results,
we can see that there is a great agreement between the substructure-based
approaches, but there is a large difference among the compounds that are
correctly predicted by the QSAR approach, especially at the top 1% and
5%. These results suggest that better results can be potentially obtained by
combining the substructure- and QSAR-based approaches.
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Topological features Geometric features QSAR features

Top 1% predictions Top 15% predictionsTop 5% predictions

Fig. 9.5. Venn diagrams displaying the relation between the positive examples
that were correctly classified by the three approaches at different cutoff values for
the anthrax dataset. The different cutoffs were obtained by looking at only the
top 1%, 5%, and 15% of the ranked predictions. Each circle in the Venn diagrams
corresponds to one of the three classification schemes and the size of the circle
indicates the number of positive examples correctly identified. The overlap between
two circles indicates the number of common correct predictions.
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Chapter 10
Phyloinformatics:
Toward a Phylogenetic Database

Roderic D. M. Page

Summary
Much of the interest in the “tree of life” is motivated by the notion
that we can make much more meaningful use of biological information
if we query the information in a phylogenetic framework. Assembling
the tree of life raises numerous computational and data management
issues. Biologists are generating large numbers of evolutionary trees
(phylogenies). In contrast to sequence data, very few phylogenies (and
the data from which they were derived) are stored in publicly accessible
databases. Part of the reason is the need to develop new methods for
storing, querying, and visualizing trees. This chapter explores some of
these issues; it discusses some prototypes with a view to determining
how far phylogenetics is toward its goal of a phylogenetic database.

10.1 Introduction

Cracraft [87] defined phyloinformatics as “an information system that is
queried using the hierarchical relationships of life.” Much of the interest in
the “tree of life” [391] is motivated by the notion that we can make much
more meaningful use of biological information if we query the information
in a phylogenetic framework. Rather than being limited to queries on single
species or arbitrarily defined sets of species, phyloinformatics aims to query
data using sets of evolutionarily related taxa (Figure 10.1).

Implementing such a system raises a number of issues, several of which
have been discussed at various workshops.1 My aim in this chapter is

1Examples include the tree of life workshops held at Yale and the Universities
of California at Davis and Texas at Austin (reports available from
http://taxonomy.zoology.gla.ac.uk/rod/docs/tol/) and the tree of life workshop
at DIMACS (http://dimacs.rutgers.edu/Workshops/Tree/).
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to explore some of the database and data visualization issues posed by
phylogenetic databases. In particular I discuss taxonomic names, supertrees,
and navigating phylogenies. I review some recent work in this area and discuss
some prototypes with a view to determining how far phylogenetics is toward
its goal of a phylogenetic database.

Fig. 10.1. Diagram illustrating a “phyloinformatic search strategy.” Instead of
undertaking searches on a single taxa at a time, queries would use sets of related
taxa, such as the taxa A–C in the subtree rooted at node 2. From reference [87].

10.1.1 Kinds of Trees

It is useful to distinguish between at least two different kinds of trees—
classifications and phylogenies. Figure 10.2 shows a classification and a
phylogeny for the plant order Nymphaeales (waterlilies).

Classification. A Linnaean classification can be represented as a rooted
tree with all nodes labeled. Each node has a “rank,” such as order, family,
genus, or species (see Figure 10.2). Although the relative position of a rank
in the taxonomic hierarchy is fixed, ranks are essentially arbitrary in that
they are rarely comparable across different taxonomic groups. For example,
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Fig. 10.2. (a) Classification and (b) phylogenetic tree for the plant order
Nymphaeales (waterlilies). Adapted from reference [458].

a fish genus may be a few thousand years old, whereas an insect genus may
be more than 40 million years old. There have been some attempts to make
ranks comparable by assigning taxa of similar age to the same rank [22], but
to date these attempts have met with little enthusiasm.

A different response to this issue is to abandon ranks altogether [97].
Without wishing to get embroiled in that debate [299], it is worth pointing out
that a useful consequence of having a small, fixed number of taxonomic ranks
is that the height of any classification tree (the number of nodes from any leaf
to the root) is limited. In the International Code of Botanical Nomenclature
there are 25 distinct ranks [456]; the NCBI taxonomy database [37, 428]2 has
28 ranks (including the rank “no rank”). Having a tree of limited height may
be an advantage in visualizing very large trees (see section 10.6).

Phylogenies. Phylogenetic trees may be inferred using a wide variety
of methods [310], and can have several different representations. Unlike
classifications, internal nodes of phylogenetic trees need not be labeled, nor
are there any ranks (see Figure 10.2). Often the internal nodes and/or edges
of a phylogeny are decorated with measures of support (such as bootstrap
values or Bayesian posterior probabilities). The edges of a phylogeny typically

2http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html



222 Data Mining in Bioinformatics

have a “length,” which measures the amount of evolutionary change that is
estimated to have occurred along that edge.

Tree of Life. The tree of life is the phylogeny of every organism, both alive
and extinct. As such it is the holy grail of phylogenetics. It may prove equally
elusive, if only because the metaphor of a tree is a gross simplification of the
complex picture of intertwined trees that emerges once lateral gene transfer
is taken into account [432]. In this sense, the tree of life is an abstraction that
serves as a useful metaphor for navigation (as, indeed, do classifications).

10.2 What Is a Phylogenetic Database For?

There are a least two distinct goals of a phylogenetic database: archival
storage and analysis. The requirements for meeting these two goals are in
many respects quite different. Archiving can be as simple as storing plain
text data files, but analysis requires considerable care in data curation if the
database is to support useful computational tasks.

10.2.1 Archival Storage

The first goal of a phylogenetic database is to act as a repository of published
phylogenetic analyses, including data and trees. Currently, TreeBASE3 [314]
is the only database that tackles this problem in anything resembling a
satisfactory way. The NCBI’s GenBank stores only molecular sequences.
The same organization’s PopSet database stores sets of sequences (and
sometimes alignments), but they are difficult to access in formats useful
to phylogenetists, and they can be incomplete. They also lack phylogenetic
trees. The EMBL’s WebAlign database [257] is similarly inadequate. Unlike
TreeBASE, Popset and WebAlign are limited to sequence data, which is a
subset of the range of data types employed by systematists.

Another trend in recent years is the archiving of data by journal publishers
as “supplementary material” for a publication. Although it is a commendable
idea, it is in reality a poor option. Journals may store data in nonstandard
formats (e.g., formatted tables of data), and they frequently use file formats
such as HTML and PDF, which need to be converted before being used. Last,
there is no guarantee, especially given the volatile nature of the publishing
industry, that these archives will be stable in the long term.

What to archive? A phylogenetic database would ideally store individual
data sets and the trees resulting from phylogenetic analysis of the data.
In practice, this ideal raises problems. Some methods of analysis, such as
parsimony, can yield many thousands of trees. Should a database store all

3http://www.treebase.org
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these trees? One approach would be to store a summary of the trees, and
indeed, authors of papers typically summarize their trees using consensus
trees (as a consequence, TreeBASE often contains consensus trees). However,
whereas for some systematists a successful phylogenetic analysis yields a
single, well-supported, phylogenetic tree, others argue that our best estimate
of evolutionary history is a probability distribution of trees (for an overview
see [184]). Bayesian methods [190] can generate sets of 104 − 106 trees, each
of which has a nontrivial probability of being the “true tree.” Although these
trees can be summarized using a consensus tree, in many applications of
Bayesian analysis we are interested in the complete set of trees. For example,
we may want to evaluate an evolutionary hypothesis of interest over all trees
yielded by Bayesian analysis. The implication is that it would be desirable to
store all the trees, especially if the analysis that yielded the trees was itself
time consuming.

Given the implications for storage space, it would be useful to develop
compression techniques for trees. These techniques are likely to save
considerable space as the trees are typically quite similar to each other. Nor
should we confine our attentions to trees—networks may be better descriptors
of the data, in which case they would need to be stored.

Metadata. A phylogenetic database needs to store information about
the analyses that generated the trees stored in that database. At present
no formal definition of such phylogenetic “metadata” has been proposed.
TreeBASE stores some information on the type of analysis performed
(whether it was parsimony or likelihood), but ideally a database would
store details of the model of evolution used and any relevant parameter
values. Because most phylogeny programs have command line interfaces
with options set by the user or support a command language such as
NEXUS [261], it should be relatively straightforward to extract metadata
for an analysis from the data file used to construct the trees. If metadata
is stored, then there is scope for automated comparison of the properties of
different phylogenetic methods, a topic that generates much debate within
the phylogenetics community.

Data formats. The existence of multiple data formats is an issue that
has plagued bioinformatics, especially sequence analysis. Phylogenetics has
suffered from this problem to a lesser extent, due in large part to the creation
of the NEXUS format [261], which is extensible and for which software
libraries are available.4 This format has been adopted by a number of software
authors, and it has been put forward as a candidate for interoperability
between bioinformatics tools [192]. As a consequence, the phylogenetics
community has been less excited by XML than some other disciplines in

4For example, the Nexus Class Library, http://hydrodictyon.eeb.uconn.edu/ncl/
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bioinformatics [2]. XML standards have been proposed (e.g., [145]) but have
yet to be widely adopted.

10.2.2 Analysis

Among the most basic questions one might ask of a phylogenetic database
are those that concern the phylogeny of a group of organisms: What is the
current best estimate of the phylogeny? Which data are available? For which
taxa do we need more information? We can also ask questions concerning
methodology: Which methods give the most robust trees? Which methods
disagree most often about relationships? What kinds of data yield the best
estimates of phylogenies? More general questions, such as the distribution of
tree shapes and other properties of trees (e.g., edge lengths), could be asked of
large numbers of trees, which could be used to inform probabilistic methods
of tree reconstruction and assist inference of evolutionary processes.

Addressing these kinds of questions requires that data are adequately
annotated and curated and are accessible to analytical and visualization tools.
Some of the problems to be addressed are discussed here.

10.3 Taxonomy

Fundamental to any phylogenetic database is a consistent organismal
taxonomy. The effort to achieve it is one of the longest running projects
in biology [121] and also one of the most contentious [147]. A naive approach
to the problem of building a list of species names is simply to compile
all scientific names that have been published, and indeed there have been
some highly publicized attempts to do so [142]. However, this approach is
inadequate because an organism can have several different names (synonyms),
and the same name may be applied to different organisms (e.g., the genus
Morus is used for both a plant and a bird). Furthermore, different authors
may have different conceptions of what taxa are covered by the same name
(see the example of albatrosses in section 10.3.2). There may also be variations
in how the same name is spelled.

As just one example of the problems taxonomic names can cause
databases, the species Pelecanoides garnotii is present in the ITIS database
(taxonomic serial number 174666) but not in the NCBI taxonomy database.
However, the NCBI list contains Pelecanoides garnoti (taxonomy ID number
79637), which differs from the ITIS name in missing the last “i.” These names
refer to the same bird, the Peruvian diving petrel, but these two databases
use different spellings of the taxonomic name. The phylogenetic database
TreeBASE also has this bird, but it is stored as “Pelecanoides garnoti
AF076073” (TreeBase taxon T9334), a combination of scientific name and
GenBank accession number. Searches on “Pelecanoides garnoti” in TreeBASE
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fail to return this taxon. Until such instances are dealt with, efforts to link
different databases together using taxonomic names will be thwarted.

Lack of taxonomic consistency also makes it difficult to develop
meaningful computational challenges or contests. For example, Michael
Sanderson proposed the following supertree challenge as part of the “Deep
Green Challenges”:5

The TreeBASE database currently contains over 1000 phylogenies
with over 11,000 taxa among them. Many of these trees share taxa
with each other and are therefore candidates for the construction
of composite phylogenies, or “supertrees,” by various algorithms. A
challenging problem is the construction of the largest and “best”
supertree possible from this database. “Largest” and “best” may
represent conflicting goals, however, because resolution of a supertree
can be easily diminished by addition of “inappropriate” trees or taxa.

Computationally this challenge is very interesting; however, from a
biologist’s perspective the results will have little meaning in the absence of a
consistent taxonomy in TreeBASE.

10.3.1 Taxonomic Assertions

At the core of any effort to establish a taxonomic name server is a data
model of taxonomic names that can accommodate the ambiguity caused by
the same name meaning different things in different contexts. One solution is
to represent a taxonomic concept as a (name, reference) pair (Figure 10.3).
A name is any validly published name, e.g. Rhea pennata or Pteroicnemia
pennata. A reference is a dated usage of the name, such as in a publication
or a database. A “potential” taxon [38] or “assertion” [322] is the pairing of
a name and reference. This model enables a database to store information on
different usages of the same name and provides a mechanism for incorporating
synonyms by linking assertions together. For example, an assertion can
contain a pointer to a valid assertion for the corresponding name [322]. The
principle strength of the assertion model is that it provides a way to associate
a name with the context in which the name is used. Consequently, taxonomic
name servers would ideally provide assertions rather than simply taxonomic
names.

Name Assertion Reference

Fig. 10.3. Model for a taxonomic concept (“assertion”) as the intersection of a
name and a reference. From reference [322].

5http://www.life.umd.edu/labs/delwiche/deepgreen/DGchallenges.html
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10.3.2 Higher Taxa and Classifications

Higher taxa are sets of lower taxa. It follows that if one searches a database
for a higher taxon, or family, one expects to find all instances of genera in
the database that belong to that family. However, the expectation will be
met only if the database contains information on taxonomic classification.
TreeBASE, for example, has no taxonomic structure, which can lead to
frustrating searches. To illustrate, a search on the taxonomic name “Aves”
(birds) yields four studies (TreeBASE accession numbers S281, S880, S296,
and S433), none of which focuses on birds (although all four studies do
contain at least one bird). However, this search has not recovered all the bird
studies in TreeBASE. For example, studies S375 (on swiftlets) and S351(on
albatrosses) are just some of the avian datasets that are stored in TreeBASE
but that are not accessible by searching on higher taxa.

While the lack of taxonomic hierarchy in TreeBASE is a limitation,
it does simplify the developer’s task as it avoids the thorny problem of
which taxonomic classification to use. In many groups of organisms there
exist different, mutually incompatible classifications. As a consequence, the
same name may have very different meanings in different classifications. For
example, Figures 10.4 and 10.5 show two classifications of albatrosses. The
Robertson and Nunn [332] classification (Figure 10.4) recognizes four genera,
Diomedea, Phoebastria, Phoebetria, and Thalassarche, whereas the NCBI’s
taxonomy database (Figure 10.5) recognizes just Diomedea and Phoebetria.
Consequently, searching GenBank for Diomedea would return sequences for
taxa that a user following the Robertson and Nunn classification would not
regard as belonging to Diomedea.

Furthermore, biological classifications follow rules that need to be encoded
into databases in order to maintain consistency. For example, a species
belongs to a single genus, and the species name includes the name of
the genus to which it belongs. The NCBI taxonomy does not always
follow this rule. Returning to albatrosses, the NCBI classification shown in
Figure 10.5 includes species such as Thalassarche bulleri as members of the
genus Diomedea. However, if Thalassarche bulleri is the species name then
Thalassarche is the genus, not Diomedea. From a nomenclatural point of
view, the albatross taxonomy in GenBank is invalid.

Ideally a database would support multiple classifications so that the
user can choose a preferred classification as the basis of a query. The
database would also be able to translate between different classifications.
Current database systems are not ideally suited to this task (for a detailed
discussion see [326]). It would also be desirable to be able to compare different
classifications. Similar issues arise in the comparison of topical hierarchies and
ontologies [406]; hence methods developed to tackle those problems might be
usefully applied to biological classification.
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 Thalassarche nov. sp

  Thalassarche impavida
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Fig. 10.4. Classification of albatrosses (family Diomedeidae) represented as
directed acyclic graphs, based on Robertson and Nunn [332]. Compare with the
classification in Figure 10.5.
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Fig. 10.5. Classification of albatrosses (family Diomedeidae) based on the NCBI
taxonomy tree. Compare with the classification in Figure 10.4.
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10.3.3 Classification of Data

The issues of consistent nomenclature apply to data as well as taxa. For
database queries to be meaningful it is important that consistent names
are used for the same sources of data. It is not uncommon for the
same gene to have several different names in the sequence databases. For
example, the mitochondrial cytochrome b gene may be variously referred
to as “cyt b” or “cytochrome b.” The genomics community is moving to
standardize gene nomenclature (e.g., [420]). For other kinds of data similar
issues arise. Morphological data tends to be described in an idiosyncratic
fashion, although efforts are being made to standardize nomenclature (see
the Structure of Descriptive Data subgroup of the International Working
Group on Taxonomic Databases).6 This project raises issues similar to those
being tackled by the Gene Ontology Consortium.7

10.4 Tree Space

A phylogenetic database is, in part, a collection of trees. Questions naturally
arise about the properties of this set of trees, how we can navigate it, and
how we can summarize information shared by sets of trees.

10.4.1 Cluster Graphs

The degree of overlap between trees can be visualized using a cluster graph
[345], where the nodes represent individual trees. Two nodes, x and y, are
connected by an edge if, for some fixed k, the corresponding trees have at
least k leaves in common. At a minimum we need two leaves in common to
construct a supertree. If we construct a cluster graph for k = 2 and the graph
is not connected, then we cannot construct a supertree for all the trees of
interest.

We can explore the degree of overlap in a set of input trees by constructing
cluster graphs for different values of k and finding the components of the
graphs. For real data the results can be disappointing. Figure 10.6 shows an
example for birds based on 143 generic-level phylogenies for birds assembled
from the literature [241]. If we require minimal overlap (i.e., k = 2), almost
all (129) of the phylogenies form a single component, with a few isolated
studies remaining. As we increase the amount of minimum overlap required,
this component gets progressively smaller, until k = 5, when the set of 143
bird trees fragments into two components with 27 and 29 trees, respectively,
and numerous smaller components (Figure 10.7). Given that the degree of
taxonomic overlap between input trees is a key predictor of the accuracy

6http://www.tdwg.org/sddhome.html
7http://www.geneontology.org/
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of the derived supertree [43, 71], then the greater the degree of overlap the
better the resulting supertree is likely to be. For the bird example, overlap
comes at the price of being able to construct supertrees for a only limited
number of taxa using subsets of the original sets of trees. For k = 5, over a
third of the input trees do not overlap with any other tree and hence have to
be discarded.
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Fig. 10.6. Size distributions of components of cluster graphs for 143 genus-level
bird phylogenies constructed for different levels of overlap. Data from reference
[241].

10.5 Synthesizing Bigger Trees

A supertree method takes a set of trees with overlapping leaves and
constructs a larger tree that contains all the leaves in the input trees
(Figure 10.8). Supertree methods are receiving increasing attention [42],
motivated in part by considerations of computational complexity. Although
the phylogenetic community has made a lot of progress in developing
sophisticated search algorithms, some of which scale to tens of thousands
of sequences, constructing trees on the scale of the tree of life does not
look feasible at present. One approach to this problem is to adopt a divide-
and-conquer strategy: build smaller trees and assemble them into a larger
tree. This is the supertree approach. For this argument to be compelling,
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a b c b c d
a b c d

supertree

T1 T2

Fig. 10.8. Two input trees T1 and T2 and a supertree.

supertree algorithms must be more efficient than tree-building algorithms.
The only polynomial time supertree algorithms to date are OneTree [7]
and MinCutSupertree [357]. The most popular algorithm for supertrees,
matrix representation parsimony (MRP) [31, 325], is NP-complete, as are
others such as minimum flipping [71] and compatibility methods [148]. The
attractiveness of a polynomial time algorithm is that it can be used to
construct supertrees quickly as part of queries on phylogenetic databases.
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10.5.1 MinCutSupertree

Semple and Steel’s [357] MinCutSupertree algorithm takes a set of k
rooted trees T and a set of species S = ∪k

i=1L(Ti) = {x1, . . . , xn}, where
L(Ti) is the set of leaves in tree Ti. The algorithm recursively constructs
the graph ST . The nodes in ST are terminal taxa, and nodes a and b are
connected if a and b are in a proper cluster in at least one of the input trees
(i.e., if there is a tree in which the most recent common ancestor of a and b
is not the root of that tree). The algorithm proceeds as follows:

procedure MinCutSupertree(T )

1. if n = 1 then return a single node labeled by x1.
2. if n = 2 then return a tree with two leaves labeled by x1 and x2.
3. Otherwise, construct ST as described.
4. if ST is disconnected then

Let Si be the components of ST .
else Create graph ST /Emax

T and delete all edges in ST /Emax
T that are

in a minimum cut set of ST . Let Si be the resulting components of
ST /Emax

T .
5. for each component Si do

Ti = MinCutSupertree(T |Si), where T |Si is the set of input trees with
any species not in Si pruned.

6. Construct a new tree T by connecting the roots of the trees Ti to a new
root r.

7. return T

end

The key difference between the OneTree algorithm and MinCutSuper
tree lies in step 4. In OneTree if the graph ST is connected (i.e., comprises
a single component) then the algorithm exits, returning the result that
the input trees are not consistent. Semple and Steel modify OneTree by
ensuring that ST yields more than one component by using minimum cuts.
In a connected graph G, a set of edges whose removal disconnects the graph
is a cut set. If each edge in G has a weight assigned to it, then a cut set
with the smallest sum of weights is a minimum cut of the graph. Note that
Semple and Steel find minimum cuts not of ST but rather of an associated
graph ST /Emax

T , which they construct as follows:

1. Weight each edge (a, b) in ST by the number of trees in T in which a
and b are in the same proper cluster.

2. Let Emax
T be the set of edges that have weight k, where k is the number

of trees in T .
3. Merge any nodes in ST that are connected by edges in Emax

T .
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For example, given the two input trees in Figure 10.9, the edge (a, b) in ST
has a weight of 2, and hence the nodes a and b are merged. This procedure
ensures that any nesting found in all the input trees T will be in the supertree
returned by MinCutSupertree.8
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Fig. 10.9. Example of the MinCutSupertree algorithm showing two input trees
T1 and T2, and the graphs ST and ST /Emax

T . The graph ST /Emax
T has three

minimum cut sets, which yield the components {a, b}, {c}, {d}, and {e}, which in
turn yield a supertree. From reference [309].

Modified mincut supertrees. Although MinCutSupertree is fast, it can
produce somewhat paradoxical results [309]. It also does not perform as well
as MRP and minimum flipping methods [71]. Modifications to the original
algorithm (described in [309]) improve its performance somewhat.

10.5.2 Supertrees and Distances

The degree of overlap between trees is a crude measure of tree similarity—two
trees may share the five leaves but completely disagree on the relationships
among those leaves. Hence it would be desirable to use a more refined
measure of tree similarity. Among those that have been used in the context
of navigating large sets of trees are the partition metric [333] used in Tree Set
Viz, and the TreeRank measure [422]. There are several other measures that

8Note that while in Semple and Steel’s original algorithm each input tree in T
can have a weight w(T ) assigned to it, for simplicity here I consider only the
case where all trees have the same unit weight.
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could be investigated, including quartet and triplet measures [93], agreement
subtrees [120], and matchings [103].

One appealing definition of a supertree is that it minimizes some distance
function between the supertree and the set of input trees [71]. Hence, we could
define a tree space based on a given metric and a corresponding supertree
method. Although Figure 10.7 is not an ordination, it resembles the diagrams
produced by the Tree Set Viz program [228].9 This program enables the user
to navigate a set of trees (all with the same leaf set) and select subsets of trees
for further analysis (such as constructing a consensus tree). This approach
could be extended to accommodate trees with overlapping leaf sets, where
users would select trees for supertree construction.

10.6 Visualizing Large Trees

A major challenge facing tree of life projects is visualizing very large trees.
Programs such as TreeView [308] are limited by the size of computer screen or
printed paper and typically can adequately display trees with a few hundred
leaves. Displaying trees with orders of magnitude more leaves is a problem
that has received a lot of attention in the computer science literature. Various
methods have been proposed, including hyperbolic tree browsing [240] and
SpaceTree [317]. Figure 10.10 shows a classification for birds displayed using
a hyperbolic tree. Figure 10.11 shows the same classification visualized
using SpaceTree. The two visualizations have rather different properties.
The hyperbolic tree enables the user to get a sense of the whole tree very
quickly, especially as it can be navigated by “dragging” nodes on the screen.
However, the spatial distortion introduced by hyperbolic geometry can be a
little disorienting. In contrast, SpaceTree is perhaps more intuitive. Rather
than distort space, it collapses large subtrees, which reveal themselves when
the user clicks on them. A SpaceTree is easy to navigate, albeit at the cost
of numerous mouse clicks.

10.7 Phylogenetic Queries

Given one or more trees there are a number of queries that biologists might
wish to formulate [294]. Some simple queries are shown in Figure 10.12. For
example, given a node in a tree, we might wish to find all its ancestors
(i.e., find that node’s “lineage”). Given two nodes, we could seek their least
common ancestor (LCA; often in the biological literature this ancestor is
referred to as the “most recent common ancestor,” MRCA). Often the subtree
rooted at LCA(A, B)—the “minimum spanning clade” [294]—of A and B will

9http://comet.lehman.cuny.edu/treeviz/
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Fig. 10.10. Hyperbolic tree drawn using the TreeBolic applet (http://
treebolic.sourceforge.net/en/home.htm). The tree is the classification for birds
(class Aves) taken from the NCBI taxonomy and generated by the Glasgow Name
Server (http://darwin.zoology.gla.ac.uk/∼rpage/ToL/).

be of interest. A path length query returns the number of nodes on the path
between two nodes.

The least common ancestor (LCA) query is central to the notion of a
“phylogenetic classification” [97]. Under this model, a classification is not
a hierarchy of nested nodes of a given rank. Instead, taxonomic groups are
defined by statements such as “the Nymphaeceae are all descendants of the
most recent common ancestor of Nymphaea and Euryale.” In this sense,
a phylogenetic classification can be viewed as simply a set of named LCA
queries.

10.7.1 SQL Queries on Trees

SQL (Structured Query Language) is the standard database query language,
but it is not particularly adept at handling trees. However, there are ways to
query trees in SQL, either using extensions to the language or preprocessing
the trees. For example, Nakhleh et al. [294] evaluate the performance of
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Fig. 10.11. Same tree shown in Figure 10.10 displayed using SpaceTree [317].

recursive Datalog queries implemented in Oracle SQL. This approach requires
only parent-child relationships to be stored in a database; however, it
makes use of features not available in many SQL implementations. Other
approaches to querying trees involve preprocessing the tree to store additional
information about the nodes. The “nested sets” model [69] assigns a pair of
numbers to each node in the tree that record the order in which the node
is visited during a depth-first traversal of the tree (Figure 10.13a). These
numbers have several nice properties. For leaf nodes the difference between
the right and left visitation numbers is 1. The subtree rooted at a node n
can be recovered by finding all nodes whose left visitation number lies within
the range of the left and right visitation numbers of node n. For example, in
Figure 10.13a the subtree rooted at the node with visitation numbers (3, 12)
comprises all nodes with left visitation numbers 3 < l < 12.

Another approach is to use “genealogical identifiers” [376] (also
called “classification notation” [30]). For each node we compute a string
representation of the path from that node to the root of the tree (the
“path+filename” notation used in file systems and Web addresses is an
example of the use of genealogical identifiers). A simple way to construct
an identifier is to assign to each node n a unique number in the range 1 . . . k,
where k is the number of children of the parent of node n. For example, the
left descendant of the root in Figure 10.13b is numbered “1” and the right
descendant is labeled “2.” We then make labels by appending the node’s
number to the label of its parent (the root has label “ ”). In Figure 10.13b
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A BA

BA BA

lowest common ancestor of A and Ball ancestors of A

path length between A and Bspanning clade of A and B

(a)

(c) (d)

(b)

Fig. 10.12. Some basic queries on trees. In each tree the query nodes are indicated
as solid dots, and nodes matching the query are shown in light gray. (a) Find all
ancestors of node A. (b) Find the least common ancestor (LCA) of A and B. (c)
Find the minimum spanning clade of A and B. (d) Find the path length between
A and B.

we label the two immediate descendants of the root “/1” and “/2,” the two
descendants of “/1” are labeled “/1/1” and “/1/2,” and so on (the forward
slash “/” is a separator). Finding a subtree in SQL becomes a simple string
search; for example, the nodes in the subtree rooted at the node labeled
“/1/1” are found by this SQL statement:
SELECT FROM nodes
WHERE (gi LIKE "/1/1%") AND (gi < "/1/10") ;
where gi is the genealogical identifier. Other tree operations are also
straightforward. For example, the LCA of any two nodes A and B is the
node with the genealogical identifier corresponding to the longest common
substring in the genealogical identifier’s of A and B (and which includes the
start of the genealogical identifier). For example, the LCA of nodes labeled
“/1/1/1/1” and “/1/1/2” in Figure 10.13 is the node labeled “/1.”

The relative merits of nested set and genealogical identifiers have been
discussed by Sofer [376] and Ballew et al. [30]. The latter opted for nested sets
for their implementation of a thesaurus, based on performance considerations.
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Fig. 10.13. Two different labeling schemes to facilitate SQL queries on rooted
trees. In each tree the same subtree is shaded light gray. (a) Labeling nested sets
assigns to each node a left and right visitation number. The labeling is created by
a depth-first traversal of the tree that records for each node when that node was
first encountered (left number) and when the traversal last visited that node (right
number). (b) Genealogical identifier labels are constructed by appending a node’s
label to that of its immediate parent. In this example, each node is labeled by its
position in the list of children of each parent.

10.7.2 Phylogenetic Query Language

Given that SQL is not ideally suited to querying trees, perhaps we need
a phylogenetic query language. Jamil et al. [199] describe some work on
developing a query language that supports SELECT, JOIN, and SUBSET queries
on trees.

The SELECT query selects a subset of trees that match one or more criteria.
Simple queries would retrieve trees containing one or more taxa (for example,
find all trees for birds). More elaborate queries would find trees based on
structure (e.g., find all trees that have humans more closely related to chimps
than to gorillas) [361, 364] or within some specified distance of a tree [422].

A phylogenetic JOIN query joins two trees together using a pair of nodes,
one from each tree. For example, we could join two trees together where
the root node of the first tree is a leaf in the second tree, thus creating a
larger, combined tree. This is, of course, an instance of the supertree problem
discussed in section 10.5. For the JOIN operation to be possible, there must
exist a supertree of which the two trees are subtrees. This can be determined
in polynomial time using the OneTree algorithm [7]. A logical extension of
the JOIN query would be to extend it to cover cases where the two input trees
are incompatible. For instance, a JOIN query could return the largest shared
subtree. There is considerable scope for developing a family of JOIN queries
and the corresponding family of supertrees. There are also possible parallels
with tree-adjoining grammars [207].

SUBSET queries retrieve part of a given tree. The spanning clade query in
Figure 10.12c is a simple example of a SUBSET query.
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10.8 Implementation

Many of the ideas outlined in this chapter have been implemented in various
prototypes by different research groups. In several cases, the results are not
robust products but are better characterized as “proof of concept” tools.

10.8.1 Taxonomic Databases

Major taxonomic databases that make their data publically available
include the Integrated Taxonomic Information System (ITIS)10 and the
NCBI’s Taxonomy database.11 Data from these two databases, together with
classifications from other sources, are incorporated in the Glasgow Name
Server,12 which is a test bed for methods for comparing and visualizing
classifications. The classifications shown in Figures 10.10 and 10.11 were
generated using that server.

10.8.2 Supertrees

The mincut supertree algorithm (section 10.5.1) has been implemented in the
C++ programming language and is available from http://darwin.zoology.
gla.ac.uk/∼rpage/supertree. The code makes extensive use of the Graph
Template Library (GTL),13 which provides a Standard Template Library
(STL) based library of graph classes and algorithms. The program reads
trees in either NEXUS or Newick format, and outputs a supertree. There is
also a Web interface to the program,14 and the program has been integrated
into TreeBASE.

Source code and executables for the minimum flipping supertree method
[71] are available from the Iowa State University Supertree Server.15 There are
several programs that can encode sets of trees as binary characters suitable for
analysis by matrix representation parsimony, such as RadCon and Supertree.

10.8.3 Tree Queries

TreeBASE contains a tree searcher [361] that uses ATreeGrep [364] to find
trees that share a specified subtree. A similar prototype that queries a user-
provided database of trees has been implemented by Kenneth Jackson.16 The
Glasgow Name Server uses genealogical identifier labels (see Figure 10.13) to
find subtrees in classifications, which are then displayed in a range of formats
(see e.g., Figures 10.10 and 10.11).
10http://www.itis.usda.gov/
11ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy
12http://darwin.zoology.gla.ac.uk/∼rpage/ToL/
13http://www.infosun.fmi.uni-passau.de/GTL/
14http://darwin.zoology.gla.ac.uk/cgi-bin/supertree.pl
15http://genome.cs.iastate.edu/supertree/index.html
16http://students.dcs.gla.ac.uk/students/jacksonk/project.html
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10.8.4 Tree Visualization

The methods discussed in section 10.6 are just two of a number of
visualization tools that could be employed to display large trees. There is a
growing literature on evaluating tree and graph visualization tools [174, 316].
Other approaches include 3D hyperbolic trees [285],17 the TreeWiz program
[338],18 and displaying trees in semiimmersive 3D environments [341]. More
recently, tree visualization methods have begun to incorporate tools for
comparing trees [286]. Both hyperbolic viewers and SpaceTree have been used
in taxonomic and phylogenetic contexts, and two of the three datasets for the
INFOVIS 2003 contest Visualization and Pairwise Comparison of Trees19 are
phylogenies or classifications.

10.9 Prospects and Research Problems

This rather superficial survey has covered just some of the issues involved in
implementing a phylogenetic database. However, it is clear that many of the
elements needed by a phyloinformatic system are either available or would
not be too difficult to implement. The challenge is to integrate the tools into a
useful package. A major topic not covered here is the acquisition, annotation,
curation, and storage of data. In some respects, this task represents a greater
obstacle than the development of tools to query and visualize the data.
Following are some of the topics that need further work.

10.9.1 Storing Large Numbers of Trees Efficiently

In section 10.2.1 it was mentioned that Bayesian methods [190] can generate
very large numbers of (i.e., more than a million) trees in a single analysis.
These trees are sampled from a Markov chain. It would be useful to store
these trees in a database, but the practice would rapidly consume a lot of
storage. Typically the trees will be very similar to each other, and the same
tree topologies will occur many times. Is it possible to compress the trees
so that the storage space requirements are reduced but individual trees can
still be recovered quickly? Can a method be developed that does not lose
information on where in the chain a given tree occurred?

10.9.2 Database Models

Most taxonomic databases, such as ITIS and the NCBI taxonomy, use
relational databases. An open question is whether this technology is the most
17http://graphics.stanford.edu/∼munzner/h3/
18http://www.eml.org/english/staff/homes/ulla/rost.html
19http://www.cs.umd.edu/hcil/iv03contest/index.shtml
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appropriate for the task. Taxonomic databases need to be able to store trees
and other graphs and to handle the semantics of classifications (for example,
the rules concerning the names of species and genera mentioned in section
10.3.2). For an introduction to the issues see Raguenaud and Kennedy [326].

10.9.3 Tree Matching

Comparing competing classifications (e.g., Figures 10.4 and 10.5) involves
tree comparison and matching. While unordered tree matching is NP-
complete, there are constrained variants that are tractable [409]. There is
considerable scope in employing these methods to quantitatively compare
classifications.

10.9.4 Searching Tree Space

Searching a database of trees may benefit from using metric-space indexing
[274]. It would be interesting to investigate the implications of the structure
of the tree space in phylogenetic databases [315] for metric-space indexing.
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Chapter 11
Declarative and Efficient Querying
on Protein Secondary Structures
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Summary
In spite of the many decades of progress in database research,
surprisingly scientists in the life sciences community still struggle with
inefficient and awkward tools for querying biological datasets. This
work highlights a specific problem involving searching large volumes
of protein datasets based on their secondary structure. In this chapter
we define an intuitive query language that can be used to express
queries on secondary structure and develop several algorithms for
evaluating these queries. We have implemented these algorithms in
Periscope, which is a native database management system that we are
building for declarative querying on biological datasets. Experiments
based on our implementation show that the choice of algorithms
can have a significant impact on query performance. As part of the
Periscope implementation, we have also developed a framework for
optimizing these queries and for accurately estimating the costs of the
various query evaluation plans. Our performance studies show that the
proposed techniques are very efficient and can provide scientists with
interactive secondary structure querying options even on large protein
datasets.

11.1 Introduction

The recent conclusion of the Human Genome Project has served to fuel an
already explosive area of research in bioinformatics that is involved in deriving
meaningful knowledge from proteins and DNA sequences. Even with the full
human genome sequence now in hand, scientists still face the challenges
of determining exact gene locations and functions, observing interactions
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between proteins in complex molecular machines, and learning the structure
and function of proteins through protein conservation, just to name a few.
The progress of this scientific research in the increasingly vital fields of
functional genomics and proteomics is closely connected to the research in
the database community; analyzing large volumes of genetic and biological
datasets involves being able to maintain and query large genetic and protein
databases. If efficient methods are not available for retrieving these biological
datasets, then unfortunately the progress of scientific analysis is encumbered
by the limitations of the database system.

This chapter looks at a specific problem of this nature that involves
methods for searching protein databases based on secondary structure
properties. This work is a part of the Periscope project at the University
of Michigan, in which we are investigating methods for declarative querying
on biological datasets. In this chapter, we define a problem that the scientific
community faces regarding searching on protein secondary structure, and
we develop a query language and query-processing techniques to efficiently
answer these queries. We have built a secondary structure querying
component, called Periscope/PS2, based on the work described in this
chapter, and we also describe a few experimental and actual user experiences
with this component of Periscope.

11.1.1 Biological Background

Proteins have four different levels of structural organization, primary,
secondary, tertiary, and quaternary; the latter two are not considered in
this chapter. The primary structure is the linear sequence of amino acids
that makes up the protein; this is the structure most commonly associated
with protein identification [321]. The secondary structure describes how
the linear sequence of amino acids folds into a series of three-dimensional
structures. There are three basic types of folds: alpha-helices (h), beta-
sheets (e), and turns or loops (l). Because these three-dimensional structures
determine a protein’s function, knowledge of their patterns and alignments
can provide important insights into evolutionary relationships that may not
be recognizable through primary structure comparisons [307]. Therefore,
examining the types, lengths, and start positions of its secondary structure
folds can aid scientists in determining a protein’s function [10].

11.1.2 Scientific Motivation

The discovery of new proteins or new behaviors of existing proteins
necessitates complex analysis in order to determine their function and
classification. The main technique that scientists use in determining this
information has two phases. The first phase involves searching known protein
databases for proteins that “match” the unknown protein. The second phase
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involves analyzing the functions and classifications of the similar proteins in
an attempt to infer commonalities with the new protein [10]. These phases
may be intertwined as the analysis of matches may provide interesting results
that could be further explored using more refined searches.

This simplification of the searching process glosses over the actual
definition of protein similarity. The reason is that no real definition of protein
similarity exists; each scientist has a different idea of similarity depending on
the protein structure and search outcome goal. For example, one scientist
may feel that primary structure matching is beneficial, while another may
be interested in finding secondary structure similarities in order to predict
biomolecular interactions [196]. In addition to these complications, there is
a plethora of differing opinions even within same-structure searches. One
scientist may want results that exactly match a small, specific portion of the
new protein, while another may feel that a more relaxed match over the entire
sequence is more informative.

What is urgently needed is a set of tools that are both flexible
regarding posing queries and efficient regarding evaluating queries on protein
structures. Whereas there are a number of public domain tools, such as
BLAST, for querying genetic data and the primary structure of proteins
[12, 13, 218, 429, 454], to the best of our knowledge there are no tools available
for querying on the secondary structure of proteins. This chapter addresses
this void and focuses on developing a declarative and efficient search tool
based on secondary structure that will enable scientists to encode their own
definition of secondary structure similarity.

11.1.3 Chapter Organization

In this chapter, we first define a simple and intuitive query language for posing
secondary structure queries based on segmentation. We identify various
algorithms for efficiently evaluating these queries and show that depending on
the query selectivities and segment selectivities, the choice of the algorithm
can have a dramatic impact on the performance of the query.

Next we develop a query optimization framework to allow an optimizer
to choose the optimal query plan based on the incoming query and data
characteristics. As the accuracy of any query optimizer depends on the
accuracy of its statistics, for this application we need to accurately estimate
both the segment and the overall result selectivities. We develop histograms
for estimating these selectivities and demonstrate that these histograms are
very accurate and take only a small amount of space to represent.

Finally, we implement our techniques in Periscope, a native DBMS that
we have developed for querying on biological datasets, and in this chapter,
we also present results from actual uses of this search technique.
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11.2 Protein Format

The first task to perform is to establish the format for representing proteins
in our system. This format largely depends on the prediction tool that is
used to generate the secondary structure of proteins in our database. For
the majority of known proteins, their secondary structure is just a predicted
measure. To obtain the secondary structure for a given protein, therefore, it
is usually necessary to enter its primary structure into a prediction tool that
will return the protein’s predicted secondary structure.

The tool used to predict the secondary structure information for the
proteins in our database is Predator [134]. Predator is a secondary structure
prediction tool based on the recognition of potentially hydrogen-bonded
residues in a single amino acid sequence. Even though, we use this particular
tool, our query-processing techniques can work with other protein prediction
tools as well.

Predator returns the protein name, its length in amino acids, its primary
structure, and its predicated secondary structure along a number in the
range 0–9 for each position. This number indicates the probability that the
prediction is accurate for the given position. We add a unique id to each
protein for internal purposes. Figure 11.1 contains a portion of a sample
protein in our database.

Name: t2 1296
Id: 1
Length: 554
Primary structure: MSAQISDSIEEKRGFFT..
Secondary structure: LLLLEELLLLLLLHHHH..
Probability: 99755577763445443..

Fig. 11.1. Sample protein.

11.3 Query Language and Sample Queries

Next we determine the types of queries that are useful to scientists in
examining secondary structure properties and design a query language to
express these queries. Based on interviews with scientists who regularly
perform secondary structure protein analysis, we are able to formulate three
initial classes of queries and a query language.
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11.3.1 Query Language

As these queries are defined, an intuitive query language begins to emerge.
Because only three types of secondary structure can occur in a protein
sequence, helices (h), beta-sheets (e), and turns or loops (l), and as these
types normally occur in groups as opposed to changing at each position, it
is natural to characterize a portion of a secondary structure sequence by its
type and length. For example, because the sequence hhhheeeelll is more likely
to occur than helhelehle, it is intuitive to identify the first sequence as three
different segments: 4 h’s, 4 e’s and 3 l’s.

The formal process for posing a query is to express the query as a sequence
of segment predicates, each of which must be matched in order to satisfy
the query. A quick note on terminology: throughout this chapter we refer
to segment predicates either as query predicates or simply predicates. Each
segment predicate in the query is described by the type and the length of the
segment. It is often necessary to express both the upper and lower bounds
on the length of the segment instead of the exact length. Finally, in addition
to the three type possibilities, h, e, and l, we also use a fourth type option, ?,
which stands for a gap segment and allows scientists to represent regions of
unimportance in a query. The formal query language is defined in Figure 11.2.
We will now look at three important classes of queries that can be expressed
using the language defined.

Query → Segments
Segments → Segment∗

Segment → <type lb ub>
Type → e | h | l | ?
lb → any integer >= 0
ub → any integer >= 0 | ∞
Segment Constraint: lb <= ub

Fig. 11.2. Query language definition.

11.3.2 Exact Match Queries

In the simplest situations, scientists would like to find all proteins that contain
an exact query sequence. An example of such a query is

find all proteins that contain ‘hhheeeelll’, or 3 h’s followed by 4
e’s followed by 3 l’s

The user would express this query as a sequence of three predicates: {<
h33 >< e44 >< l33 >}. Our algorithms take the exactness of these predicates
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literally; they do not return matches that are a part of a larger sequence. For
example, the sequence hhhheeeelll would not be returned as a match for the
example query because it contains four h’s at the beginning of the sequence,
not three as specified in the first query predicate.

11.3.3 Range Queries

While exact matching is important, in some cases it may be sufficient to find
matches of approximate length. For example, one might want to pose the
following query:

find all proteins that contain a loop of length 4 to 8 followed by a
helix of length 7 to 10

Here the exact position where the amino acids stop looping and start to form
a helix is not as important as the fact that there is a loop followed by a helix.
This range query would be expressed as {<l 4 8><h 7 10>}. Note that this
example provides the motivation for expressing both the upper and lower
bounds of the segment length.

11.3.4 Gap Queries

Another feature scientists would like to be able to express in their queries
is the existence of gaps between regions of importance. For example, one
scientist may be interested in matching two portions of a query protein
exactly but may not care if the connecting positions hold any similarity.
One of the big drawbacks of current primary structure search tools is that
there is no effective way to specify gaps in the query sequence. Using our
query language, these gaps can easily be expressed. The query sequence {<h
4 6><? 0 ∞ ><l 5 5>} would solve the gap query:

find all proteins that contain a helix of length 4 to 6 followed at
some point by a loop of length 5

These three classes of queries provide an initial functionality for our system
to solve; we will look at more complex queries in our future work.

11.4 Query Evaluation Techniques

This section describes four methods for evaluating the types of queries just
defined. The first approach uses a protein scan and the last three utilize
a segmentation technique similar to that described in section 11.3 that
represents proteins as sequences of segments. Section 11.5 will provide details
about a statistics-based query optimizer that chooses between these methods.
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11.4.1 Complex Scan of Protein Table (CSP)

The first approach performs a scan of the protein table itself. Before
proceeding with the details of the scan, we will first describe the schema
that is used to store proteins in the protein table. The schema for the protein
table is

table protTbl (
name char(30),
id int primary key,
length int,
primary structure char(length),
secondary structure char(length),
probability int(length));

The descriptions for these fields are the same as in Figure 11.1. The latter
three fields are character or integer arrays, where length is the length of the
protein in amino acids.

The general plan for the scan is that each protein in the database is
retrieved, its secondary structure is scanned, and its information is returned
if the secondary structure matches the query sequence. The matching is
performed using a nondeterministic finite state machine (FSM) technique
similar to that used in regular expression matching [371]. Each secondary
structure is input to the FSM one character at a time until either the machine
enters a final (matching) state or it is determined that the input sequence
does not match the query sequence.

As protein sequences can be long, sometimes consisting of thousands of
amino acids, it is common for a query sequence to match more than once
in a given protein. Scientists are interested in each match, not just each
matching protein. In other words, if a sequence matches a given protein in
two distinct positions, each of these places must be reported separately. To
achieve this result, our algorithm checks for all possible occurrences in each
protein by running the FSM matching test once for each position in the
protein’s secondary structure.

The FSM itself is constructed once for each query. In our algorithm
the FSM consists of a lookup table with next-state assignments for the
three possible types of inputs as well as information regarding the final, or
matching, and exiting, or nonmatching, states. This complex scan of the
protein table is able to solve any of the three types of queries described in
section 11.3 containing any number of predicates.

11.4.2 General Segmentation Technique

The last three approaches are based on a segmentation scheme that represents
proteins as a sequence of segments. This segmentation technique is similar
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to the one described in [312] in which the interest is in retrieving sequences
of integers. The idea is to break the secondary structure of a protein into
segments of like types. These segments are stored in a separate segment
table. Along with the type and length of each segment, the protein id of the
segment’s originating protein and the start position of the segment in that
protein are also stored. The corresponding segment table schema, then, is

table segTbl (
segment id int primary key,
id int,
type char,
length int,
start position int,
foreign key (id) references protTbl (id));

A multiattribute B+-tree index is built on the segment table’s type and
length attributes. A clustered B+-tree index is also built on the protein id
of the protein table to facilitate protein retrieval. Tables 11.1 and 11.2 show
an example of several small protein entries with their corresponding segment
tuples.

Table 11.1. Sample protein table.

name id len primary secondary prob.
A 1 5 mtgpi lleee 99401
B 2 6 liffki hhheee 983121

Table 11.2. Sample segment table.

seg id id type length start position
1 1 l 2 1
2 1 e 3 3
3 2 h 3 1
4 2 e 3 4

The remaining three query evaluation techniques all incorporate some
variation on the following plan description to produce proteins that satisfy a
given query. In general, each nongap predicate of a query can be evaluated
using either a scan of the segment table or a probe of the segment index.
Once individual matching segments of the query have been retrieved, they
can be merged based on their protein id; the start position information can
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then be used to satisfy the ordering constraints between segments to produce
the final matching results.

In all three techniques, once the matching protein ids have been found,
they must still be joined with the protein table in order to obtain the actual
proteins. This is accomplished through an index-nested loops join (INLJ) of
the protein ids with the B+-tree index built on the protein id attribute of
the protein table. These protein ids (obtained from the segment predicate
matches) are first sorted in order to improve the performance of the INLJ.
This join provides quick retrieval of the actual proteins stored in the protein
table, especially as the B+-tree index is clustered on the protein id attribute.

This segmentation query plan can be conveyed in standard database
terminology through SQL queries using the segment and protein tables. We
now present an example of each of the three types of queries in our query
language along with their corresponding SQL translations. The exact match
query {<e 8 8><h 6 6>} is expressed in SQL as

select * from protTbl p, segTbl s1, segTbl s2
where s1.type = ‘e’ and s1.length = 8
and s2.type = ‘h’ and s2.length = 6
and s1.id = s2.id and s1.id = p.id
and s2.start pos - (s1.start pos + s1.length) = 0

Note that the start position information is utilized to account for the
predicate ordering. The range query {<e 8 10><l 6 7>} is essentially
the same as the exact match query only with range bounds on the length
constraints instead of single equality bounds, as shown here:

select * from protTbl p, segTbl s1, segTbl s2
where s1.type = ‘e’ and s1.length BETWEEN 8 and 10
and s2.type = ‘l’ and s2.length BETWEEN 6 and 7
and s1.id = s2.id and s1.id = p.id
and s2.start pos - (s1.start pos + s1.length) = 0

Queries involving gaps become a little more complicated because the start
position information must also be utilized to account for the gap constraints
as well as the predicate ordering. The query {<e 8 10><? 3 5><h 2 2>} is
expressed as

select * from protTbl p, segTbl s1, segTbl s2
where s1.type = ‘e’ and s1.length BETWEEN 8 and 10
and s2.type = ‘h’ and s2.length = 2
and s1.id = s2.id and s1.id = p.id
and s2.start pos - (s1.start pos + s1.length) <= 5
and s2.start pos - (s1.start pos + s1.length) >= 3

We will now describe the remaining three query evaluation techniques,
which all incorporate the methodologies of the foregoing plan with some
minor variations.
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Simple scan of segment table (SSS). In this technique the entire segment
table is scanned for segments that match the most highly selective predicate
of the query. All the segments returned by the scan then participate in the
aforementioned INLJ to retrieve their actual proteins. It is important to note
that the retrieved proteins do not yet match the query, as there may be
other query predicates that have not yet been tested. If there are additional
predicates in the query, each protein is scanned using the FSM technique
described in section 11.4.1 to produce the final matching result.

Index scan of segment index (ISS). The index scan query plan is
essentially identical to the SSS method with one exception. While the SSS
method uses a scan of the segment table to produce segments matching the
most highly selective predicate, the ISS method instead utilizes the B+-
tree index built on the type and length attributes of the segment table to
retrieve segments that match the most highly selective predicate. Once these
matching segments have been found, an INLJ with the protein table id index
and a possible complex scan (for queries with more than one predicate) are
performed in the same fashion as in the SSS plan.

Multiple index scans of segment index (MISS(n)). The final
method described in this chapter, the multiple index scan technique, is a
generalization of the ISS plan. The basic change is that instead of performing
only one index probe, the B+-tree index is now probed n times with the n
most highly selective query predicates, where n can range from two to the
total number of nongap predicates in the query. We will refer to this value of n
as the MISS number. The segment results of each individual index probe are
sorted, first by protein id and then by start position, and written to separate
files.

The newly written files then participate in an n-way sort-merge join to
find query segments with the same protein id. At this point the start position
information is used to determine whether the segments occur in the correct
order within the protein and if the proper gap constraints between them are
met. If the segments match the query constraints, then the corresponding
protein id is returned. As with the previous two plans, the protein id then
participates in an INLJ with the protein id index followed by a possible
complex scan to test for any remaining query predicates.

11.5 Query Optimizer and Estimation

When a query is posed to Periscope, the system must decide which of the four
plans should be used to evaluate the given query. In this section we present the
framework of the query optimizer that is used to make this decision. As in the
classic System R paper, our query optimizer utilizes cost functions that model
the CPU and I/O resources of each plan [21, 356]. We also have a slightly
simpler method of query optimization that uses heuristic cutoffs to determine
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the most efficient query plan. Both the cost functions and heuristic cutoffs
take as input the estimations of the selectivity of each of the query predicates
and the selectivity of the result. Traditional database management systems
utilize histograms to provide such estimations [194, 195, 198, 287, 356]. The
unique, restricted nature of the segment query language and the composition
of protein secondary structure allows the Periscope query optimizer to
incorporate these standard techniques and expand the estimation capabilities
of histograms beyond their typical capacity. We utilize two histograms in
our current implementation: a basic one to determine the selectivities of the
query predicates and a more complex one to estimate the resulting protein
selectivity. Section 11.5.1 introduces the basic histogram and section 11.5.2
describes the complex histogram. Sections 11.5.3 and 11.5.4 explain how the
query optimizer uses these histograms in the heuristic cutoff and cost function
methods, respectively.

11.5.1 Basic Histogram

The basic histogram contains information about the number of segments in
the segment table for a given type and length pair. As there are only three
possible types, e, h, and l, and as the segments are usually relatively small in
length, it is neither space nor time consuming to maintain exact counts for
the majority of protein segments. The basic histogram is stored in the form of
a k×3 matrix, where k is the number of length buckets in the histogram and
the second dimension has one value for each of the three possible types, e, h,
and l. For example, position [7][2] holds the number of <h 7 7> segments.1

The last bucket is used to represent all segments with length greater than
or equal to k. For range predicates, an estimate is computed by summing
the counts in the appropriate range of buckets. This estimate is exact for all
segment predicates that are less than k in length.

In our current implementation, the number of buckets is set to 100, since
segments rarely have a length of longer than one hundred positions. This
size is also small enough to ensure a compact storage representation for the
histogram. Segments over a length of 100 are considered to have a default
low selectivity.

This histogram may be populated during or immediately following the
loading of the segment table. Updates can be performed on each new protein
addition without significant time penalty. With the protein dataset that
we use for our experimentation, which contains 248,375 proteins and their
associated 10,288,769 segments, this histogram requires only 13 seconds to

1Note that the numbering of the rows and columns in the matrix starts from 1
instead of 0. As there is no practical reason for being able to express segments of
length 0, segments of length 1 are the smallest segments we consider. We want
to keep the segment length identical to the associated histogram row number, so
the row numbering starts with 1; the column numbering also starts with 1 (and
ends at 3) for uniformity.
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build and is created immediately after the loading of the segment table. The
time spent by the query optimizer in estimating query predicate selectivities
using this histogram is minimal, less than a millisecond on average. In terms
of space requirements, the histogram contains information about more than
99% of all segments and occupies only 1.2 KB of disk space.

11.5.2 Complex Histogram

The second histogram, which has a more complex structure, is used to
estimate the selectivity of the entire query result, not just of a given
query predicate. This calculation procedure surpasses traditional histogram
estimation techniques in that it finds the probability of multiple attributes
occurring in a specific order in the same string, possibly separated by gap
positions. This estimation technique is in contrast to traditional histograms
that are used to estimate the occurrence of a single attribute [194, 195, 356]
or multiple unordered substrings [198].

Description. The complex histogram is stored as a four-dimensional matrix;
the first dimension corresponds to the protein id attribute, the second
dimension to the start position attribute, and the third and fourth dimensions
represent the same length and type attributes as in the simple histogram.
Due to the large number of proteins found in protein databases and their
long sequence lengths, the first two dimensions are divided into equal-width
buckets to reduce space requirements. For example, in our experimental
dataset with 248,375 proteins and 10,288,769 segments, we use one hundred
buckets each for the first, second and third dimensions and three buckets for
the fourth dimension (corresponding to the three types e, h, and l). Position
[3][4][7][2], for example, holds the number of <h 7 7> segments whose starting
position is in the range of the fourth starting position bucket and whose
protein id lies within the third protein id bucket.

Result cardinality estimation. We will initially present our cardinality
estimation algorithms using an example. Consider the query {<P1 ><P2 >
}, which has two predicates, P1 and P2. Table 11.3 shows all possible
arrangements for the two predicates in a histogram with three buckets (SPB1,
SPB2, and SPB3) for the start position ranges 0–49, 50–99, and 100–149,
respectively. For simplicity we assume here that these three start position
buckets correspond to the same protein id bucket. Note that the type and
length attributes of the buckets shown in the table are implicitly defined
according to the definitions of the predicates P1 and P2.

The arrangements of these two predicates fall into two configurations.
In the first configuration, the predicates match segments in distinct
start position buckets. For the two-predicate example, cases 1–3 show all
possible arrangements with this configuration. In the second configuration,
corresponding to cases 4–6 in Table 11.3, both predicates match segments in
the same bucket.
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Table 11.3. Arrangement possibilities for two query predicates in three start
position buckets.

SPB1 (0–49) SPB2 (50–99) SPB3 (100–149)
1 P1 P2

2 P1 P2

3 P1 P2

4 P1 and P2

5 P1 and P2

6 P1 and P2

We now need formulas to estimate the number of matches in each of
these cases. Once we have these formulas, the resulting cardinality will be
the sum of the estimates from each of these cases. Table 11.4 contains a
description of the variables that will be used in these formulas. Figure 11.3
gives the pseudocode for the general algorithm that is used to calculate
the estimated result cardinality of a query. The result selectivity follows by
dividing this cardinality by the total number of proteins in the database. We
next present the estimations for cases in both these configurations. In the
following discussion we will refer to these configurations as distinct bucket
and same bucket configurations.

Table 11.4. Description of the cardinality estimation variables.

Variables Description
NumProtIdBuckets Number of protein id buckets in first dimension of

histogram
NumPosBuckets Number of start position buckets in second dimension of

histogram
NumProtPerBucket Number of proteins represented by a protein id

bucket
NumPosPerBucket Number of start positions represented by a start

position bucket
PIBi ith protein id bucket
SPBi ith start position bucket
P1 First predicate used in the estimation
P2 Second predicate used in the estimation
Gap Gap between P1 and P2

X.start Lower bound on predicate X’s range where X =
P1, P2, or Gap

X.end Upper bound on predicate X’s range where X =
P1, P2, or Gap

The calculations for both types of configurations are performed with
the assumption that the segments are uniformly distributed throughout
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This function gives the general framework for estimating the cardinality of a
query using two predicates, P1 and P2, and the Gap between them.

double Estimate Cardinality(P1, P2, Gap)
{

double card = 0;

// do for each protein id bucket in the histogram
for (int i = 1; i <= NumProtIdBuckets; i++) {

// for each possible starting position bucket, do same bucket configuration
for (int j = 1; j <= NumPosBuckets; j++) {

card += Same Bucket(PIBi, SPBj , P1, P2, Gap);
}

// for each possible starting position, do distinct bucket configuration
for (j = 1; j < NumPosBuckets; j++) {

card += Distinct Bucket(PIBi, SPBj , P1, P2, Gap, j);
}

}
return card;

}

Fig. 11.3. Cardinality algorithm pseudocode.

the protein id and start position buckets. The distinct bucket configuration
estimate is calculated by multiplying the number of matching first-predicate
segments found in the first start position bucket by the number of second-
predicate matches found in the second bucket divided by the number of
protein ids in each protein id bucket. The division operation is necessary
because of the uniform distribution assumption. This formula can be
generalized to estimate the number of results from n predicates in n
distinct start position buckets and can also incorporate gap information
to automatically disregard start position buckets that do not satisfy the
gap requirements. Figure 11.4 gives the pseudocode for the distinct bucket
configuration algorithm.

The calculations for the same bucket configuration are more complex.
When P1 and P2 are in the same start position bucket, P1’s start position
could be anywhere within the range of that bucket. We assume a uniform
distribution of the start positions of the two predicates. For each possible
first-predicate start position, we calculate the chances of the second predicate
being in the proceeding start positions and in the same protein. For example,
in case 4, the number of proteins that match P1 at position 9 is np1 =
(1/50) × (number of P1 in SPB1). Similarly, the number of proteins that
match P2 in positions 10 to 49 is np2 = (4/5) × (number of P2 in SPB1).
Now, assuming that there are 100 proteins in each protein id bucket, the
estimated number of proteins that match the query in start position 9 for
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This function determines the number of proteins that for a given protein id
bucket (PIBk) and a given start position bucket (SPBi) contain P1 in SPBi

and P2 in any subsequent start position bucket (for the same protein id bucket
PIBk).

Distinct Bucket(PIBk, SPBi, P1, P2, Gap, i)
{

int P1 count = number of P1 in PIBk and SPBi (from histogram);
int P2 count;

// need to be aware of the last possible start position
// that occurs in the given position bucket (ith bucket)

int SPBi end = (i × NumPosPerBucket);

// also need to be aware of the first possible start position that occurs in SPBi

int SPBi start = ((i - 1) × NumPosPerBucket) + 1;

// also need to calculate the first and last possible start positions in each
// of the subsequent start position buckets, SPBj

int SPBj start, SPBj end;
double sum = 0;

// calculate for each of the following position buckets
for (int j= i+1; j < NumPosBuckets + 1; j++) {

SPBj end = (j × NumPosPerBucket);
SPBj start = ((j - 1) × NumPosPerBucket) + 1;

// take gaps and predicate lengths into account
if (SPBj start <= SPBi end + P1.end + Gap.end) {
if (SPBj end >= SPBi start + P1.start + Gap.start) {

sum += P2 count (number of P2 in PIBk and SPBi from histogram);
}

else { j = NumPosBuckets + 1; }
}

}
double result = (P1 count × sum)/NumProtPerBucket

return result;
}

Fig. 11.4. Distinct bucket configuration algorithm pseudocode.

the given protein id bucket is (np1 × np2)/100. To get the total estimate for
the start position bucket SPB1, we integrate all the possible start positions.
In our actual estimates we also factor the lengths of the predicates into the
analysis. Figure 11.5 gives the pseudocode for the same bucket configuration
algorithm.

Histogram analysis. Next we examine the accuracy of the complex
histogram as well as its space and time efficiency. Figure 11.6 tests the
accuracy of these complex histogram estimates by comparing the actual
number of proteins that match a given query with the estimated number.
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This function determines the number of proteins that for a given protein id
bucket (PIBk) and a given start position bucket (SPBi) contain both P1 and

P2 in the correct order with the specified gap between them.
Same Bucket(PIBk, SPBi, P1, P2, Gap)

{
// if P1 and the Gap are longer than the bucket, then no matches will occur

if (P1.start + Gap.start) >= NumPosPerBucket) { return 0; }

P1 count = number of P1 in PIBk and SPBi (from histogram);
P2 count = number of P2 in PIBk and SPBi (from histogram);

// P2 cannot start before the minimum range of P1 and Gap have occurred
int length = P1.start + Gap.start;

double sum = 0;

for (int j = 0; j < NumPosPerBucket - length; j++) {
sum += ((NumPosPerBucket - j - length)/NumPosPerBucket)

× (P2 count/NumProtPerBucket)
}

double result = (sum × P1 count)/NumPosPerBucket;
return result;

}

Fig. 11.5. Same bucket configuration algorithm pseudocode.

The query tested is a three-predicate query in which the gap, or middle
predicate, is varied to produce different query result selectivities. The results
from the dataset of 248,375 proteins show that the histogram estimates are
accurate to within approximately 80% of the actual result size. This degree
of accuracy is sufficient for the optimizer’s needs, as only a general idea of
the selectivity is required by the cost functions and heuristics.

Next we analyze the time required to compute these estimates. For a
histogram to be practical, this estimation time must be small. We performed
this cardinality estimation on several seven-predicate queries with varying
segment selectivities. Each of the queries has four nongap predicates that are
alternated with three gap predicates. For each query we ran the cardinality
estimation using two, three, and four of the nongap predicates and recorded
the estimation time for each. For the two-predicate trials the two most highly
selective predicates are used in the estimation; the same rule is applied in the
three-predicate cases where the three most selective predicates are utilized.
All four of the nongap predicates are used for the four-predicate trials. The
data set used for this test consists of 56,000 proteins and 1,100,000 segments;
the protein and segment tables were 56 and 66 MB in size, respectively. Figure
11.7 contains the execution time results of these cardinality estimations.

The results in Figure 11.7 show that the estimation time is small when
the two or three most highly selective predicates are used to calculate
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the estimations. With four-predicate estimations, however, the calculation
time will probably surpass the query evaluation time, as validated in the
experimental section because the number of calculations required is factorial
in the number of query predicates and start position buckets. We also find in
analyzing the accuracy of the estimations that adding the third and fourth
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predicates to the estimation does not significantly improve the accuracy found
by only using two query predicates.

Thus, based on this empirical evidence, in our implementation we look
only at the two or three most highly selective predicates for estimation
purposes. In choosing to use the two most highly selective predicates over two
random query predicates, we ensure that the estimated query result space
is reduced as much as possible. Calculating the individual query predicate
selectivities to determine the two most highly selective predicates is very
efficient when the simple histogram techniques described in Section 11.5.1
are used.

In the current implementation we create the complex histogram
immediately following the loading of the segment table. The complex
histogram takes 22 seconds to load and requires 5.8 MB of disk space, which
is only 1% of the size of the segment table.

11.5.3 Heuristic Cutoff Method

Periscope’s query optimizer has two different methods for determining the
most efficient query plan, a heuristic cutoff method and a cost formula
method. Both utilize the basic and complex histogram techniques described
for determining segment and result selectivities. The heuristic cutoff method,
which is simpler and less detailed, is the default technique in our current
implementation, although the cost formula technique can be turned on with
a simple flag option.

The heuristic cutoff process arose from our early experimentation with
the four query evaluation methods, in which we found that each query plan
performs differently for different queries depending on the selectivities of the
query predicates and the cardinalities of the results. Further analysis of these
performance trends allowed us to form some guidelines for choosing one query
plan over the other based on the selectivity values. These guidelines then were
translated into an algorithm that uses heuristic cutoff values to determine the
most efficient plan. The cutoff values vary from system to system and should
be established on each system through initial testing; they may also be tuned
during further experimentation stages. Figure 11.8 contains the pseudocode
for the heuristic cutoff algorithm.

The actual query optimization process using this method happens as
follows. The basic histogram is used to determine the segment selectivities
of all the nongap predicates in the query and the complex histogram is used
to calculate the result protein selectivity. These results are input into the
heuristic cutoff algorithm, which is then evaluated, and the optimal plan is
returned. The system then uses this method to evaluate the query.
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Variables
Sel1 - selectivity of first query predicate

SelMHSP - selectivity of most highly selective predicate
SelResult - selectivity of the result (estimated using complex histogram)

Sorted Seli - selectivity of the ith most highly selective predicate
n - number of nongap query predicates

Example Cutoff Values
CSPCutoff - .1% TableCutoff - 10% ResultCutoff - 50% SumCutoff - 10%

Cutoff Heuristic Algorithm
if (Sel1 < CSPCutoff) { plan = CSP; }

else if (SelMHSP > TableCutoff) { plan = SSS; }
else if (SelResult > ResultCutoff) { plan = ISS; }

else {
plan = MISS;

// sort nongap query predicates by selectivity with SelMHSP first,
//store in Sorted Sel list

sel sum = 0;
for (int i = 1; i <= n; i++) {

sel sum += Sorted Seli;
if (sel sum > SumCutoff) { miss number = i - 1; i = n + 1; }

else if (i == n) { miss number = n; }
}

}
return plan (and optionally, miss number)

Fig. 11.8. Heuristic cutoff algorithm.

11.5.4 Cost Formula Method

The second method Periscope’s query optimizer has for determining the
most efficient query plan is the cost formula method. In this method, cost
formulas are used to model the I/O time and CPU resources needed for each
evaluation method for a given query. The underlying functionalities of each of
the methods are similar and use a number of basic operations including index
scans, table retrievals, and finite state machine matchings. We developed cost
models, which are along the lines of the cost models in [356], for each of these
basic operations. These models are then incorporated into the individual
cost models for the various algorithms. The basic and complex histograms
described in sections 11.5.1 and 11.5.2 are used to estimate the query segment
selectivities and the result protein selectivity. Standard statistics such as table
cardinalities and tuple sizes are maintained and used in the cost model. In
addition, a number of system-dependent “fixed” constants, such as page sizes,
maximum index fanout, and weighted I/O and CPU costs, are used. The
following section describes the cost formulas for the basic operations that are
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used by the query evaluation algorithms, and section 11.5.4 details how these
cost formulas are incorporated to estimate the overall cost of each algorithm.

Cost functions for basic operations. A description of the variables and
constants that are used in the cost functions is given in Table 11.5.

Table 11.5. Description of the cost function variables and constants.

Variables Description
||S|| Total number of segments
||P || Total number of proteins
|S| Number of segment table pages
|P | Number of protein table pages
|IS| Number of segment index pages
|IP | Number of protein index pages
|Q Pages| Total number of pages in all the temporary files for

a given query
Sel(Pi) Selectivity of the ith query predicate
Sel(Q) Result selectivity of the query
N Total number of temporary files for a given query

(MISS number)
WCPU Weighted time for a CPU operation
WIO Weighted time for an I/O operation
MaxProtFanout Maximum fanout of the protein id index
MaxSegFanout Maximum fanout of the segment <type, len> index
AvgLen Average length of a protein in amino acids
SegSize Size of a segment tuple in the DBMS
PageSize Size of a page in the DBMS
MaxNumberStates Number of possible states the FSM can be in at one

time

One of the basic operations of the query evaluation methods is the
complex scan of a protein. The time required for this operation depends
on the average length of the proteins, the maximum number of states the
FSM can be in at a given time, and the result selectivity of the query. This
cost, CostCS , is estimated as

CostCS = WCPU × AvgLen × MaxNumberStates × Sel(Q)

A basic operation used by the SSS plan is the scan of the segment table
to find matching segments. This includes both the scanning time as well
as the time to compare the segments to the given query predicate. The
function CostSegScan calculates the time required for this basic operation.
It assumes that each comparison can be done in one CPU cycle. The cost of
this operation is

CostSegScan = WIO × |S| + WCPU × ||S||
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Another basic operation is the probing of the segment index to find
matching segments; this operation also includes the retrieval of these
segments. CostSegProbe calculates the time required to probe the segment
index and CostSegRet calculates the time required to retrieve the matching
segments. These functions require as input the selectivity of the given query
predicate, Sel(Pi). For CostSegProbe, the I/Os required include retrieving a
fraction of the segment index pages as determined by the selectivity of the
given query predicate. The CPU time required is the time to traverse to
the leaf pages of the segment index to find the matching segments. Our
calculation assumes that the height of the index is two. For CostSegRet,
the I/O’s required are to retrieve the data pages containing the matching
segments. In the worst case, this is the maximum number of segment data
pages; otherwise, it is determined by the number of matching segments,
denoted by Sel(Pi) × ||S||. The costs for the segment probing and retrieving
operation are

CostSegProbe =(WIO × |IS| × Sel(Pi)) + (WCPU × 2 × Sel(Pi)×
||S|| × log(MaxSegFanout))

CostSegRet =WIO × min(|S|, Sel(Pi) × ||S||)

A related basic operation is the probing of the protein id index to find
the matching protein ids; this operation also includes the retrieval of these
proteins. The functions CostProtProbe and CostProtRet perform almost the
same calculations as their corresponding segment functions described in
the preceding paragraph. One difference occurs in the I/O portion of the
CostProtProbe function, which calculates the I/Os required to retrieve the
appropriate protein index pages. In the example segment case, the matching
segments are found in one portion of the index, not randomly scattered
throughout. The protein ids to be retrieved using the protein id index,
however, although they are sorted, will not occur in one specific portion of
the index but will instead be scattered throughout. Therefore, if the number
of protein ids to be retrieved is greater than the number of protein id index
pages, it is possible that all the index pages may need to be retrieved. This
is accounted for in the CostProtProbe equation. The costs for the protein id
probing and retrieving operations are

CostProtProbe =(WIO × min(|IP |, Sel(Pi) × ||S||))+
(WCPU × 2 × Sel(Pi) × ||S|| × log(MaxProtFanout))

CostProtRet =WIO × min(|P |, Sel(Pi) × ||S||)

Another basic operation that is used by the MISS plans is the writing of
temporary files. For each of the query predicates used in the MISS methods,
the resulting matching segments must be sorted and written to temporary
files. The function CostWrite calculates the time required to write one of these
temporary files. (The time required for the sorting will be described later.)
CostW rite is based on the number of segments to be written, which also



264 Data Mining in Bioinformatics

depends on the selectivity of the given query predicate, Sel(Pi). The number
of segments to be written is multiplied by the storage size of a segment in
the database storage manager and is divided by the size of a database page
to determine the number of pages necessary for the temporary file. The cost
for writing a temporary file is

CostWrite = WIO × Sel(Pi) × ||S|| × SegSize/PageSize

The merge of these temporary files is another basic operation that is used
only by the MISS plans. The function CostMerge calculates the I/O and CPU
time necessary to merge the temporary files by protein id and start position.
It requires as input the number of temporary files (or the MISS number),
the total number of pages in these temporary files, and the selectivities of
each of the corresponding query predicates. The only I/O cost incurred is the
time to read each page in each temporary file, denoted as |Q Pages|. The
CPU time is measured here for the worst case. In the average case each of the
segments in each temporary file will have to be compared to each of the other
segments in the other temporary files. Therefore, the CPU time can be found
by computing the product of the number of segments in each temporary file.
The number of segments in the ith temporary file is Sel(Pi) × ||S||. The
overall cost of the file merge, then, is

CostMerge = WIO × |QPages| + WCPU ×
n∏

i=1

(Sel(Pi) × ||S||)

The final basic operation involves sorting, either on the protein ids or on
the segment type and lengths. Both sorts are implemented as quick sorts,
which in general have an execution time of O(m log m). In our cost formula
m represents the number of segments being sorted, which depends on the
selectivity of the query predicate used. The number of segments to be sorted is
denoted by Sel(Pi)×||S||. The function CostSort calculates the time required
to sort a set of segments; its equation is

CostSort = WCPU × Sel(Pi) × ||S|| × log(Sel(Pi) × ||S||)

Cost functions for query plans. Now that we have examined the costs
for each of the basic functionalities of the four query evaluation methods,
we will look at how these basic operations are put together to formulate
the overall query plan cost functions. The following cost formulas rely on the
knowledge of the segment and result selectivities that are estimated using the
two histograms described in sections 11.5.1 and 11.5.2. While they are not
shown as inputs to the cost formulas that follow, it is assumed that they are
available for use in the cost estimation. The cost for the CSP plan, CostCSP ,
is the easiest to calculate as it involves simply scanning the protein table and
performing a complex scan for each protein:

CostCSP = WIO × |P | × ||P || × CostCS
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The SSS method involves scanning the segment table to retrieve segments
that match the most highly selective query predicate. These segments are
then sorted by protein id and participate in an index probe of the protein
id index to retrieve the actual proteins. A complex scan of the proteins may
then be performed based on the number of predicates in the query. The cost
formula for the SSS method, CostSSS , follows and assumes that the value for
Sel(Pi) that is used in the various basic operation formulas is the selectivity
of the most highly selective predicate:

CostSSS =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CostSegScan + CostSort+
CostProtProbe + CostProtRet+
(Sel(Pi) × ||S|| × CostCS) if number of query

predicates > 1

CostSegScan + CostSort+
CostProtProbe + CostProtRet if number of query

predicates == 1

The ISS method involves probing the segment index to retrieve segments
that match the most highly selective query predicate. These segments are
also sorted by protein id and participate in an index probe of the protein
id index to retrieve the actual proteins. A complex scan of the proteins may
then be performed based on the number of predicates in the query. The cost
formula for the ISS method, CostISS , follows and assumes that the value for
Sel(Pi) that is used in the various basic operation formulas is the selectivity
of the most highly selective predicate:

CostISS =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CostSegProbe + CostSegRet+
CostSort + CostProtProbe+
CostProtRet + (Sel(Pi)×
||S|| × CostCS) if number of query

predicates > 1

CostSegProbe + CostSegRet+
CostSort + CostProtProbe+
CostProtRet if number of query

predicates == 1

The MISS method is more complicated because multiple probes of the
segment index are performed; their results are written to temporary files and
then merged before participating in the protein index probe. A complex scan
of the proteins may then be performed if the MISS number, n, is less than
the total number of predicates in the query. When calculating the cost of the
MISS plan, CostMISS , care must be taken in specifying the selectivities that
are used by the various basic operations. Both the formulas CostProtProbe

and CostProtRet described in section 11.5.4 use a selectivity value, Sel(Pi),
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to determine how many protein ids will need to be probed for and retrieved. In
the SSS and ISS cost formulas, this selectivity value is simply the selectivity
of the most highly selective predicate. In the MISS cost formula, however, this
selectivity value represents how many protein ids are estimated to be returned
from the merge of the n query predicates. CostMISS assumes the worst
when calculating this selectivity value by using the sum of the n segment
selectivities. This is essentially saying that the number of protein ids that
will be returned from the merge is the same as the total number of segments
returned from the n segment index probes. Although this is an upper bound
on the actual number of protein ids, it is still accurate enough to give a
reasonable estimation. Therefore, it is assumed that the CostProtProbe and
CostProtRet formulas will use the sum of the n query predicate selectivities as
the required selectivity value. This same value also is used to determine the
number of complex scans that may have to be performed at the conclusion
of the MISS plan; this is shown in the CostMISS formula that follows.
The CostMISS formula also assumes that the n predicates used in the n
segment index probes, writes, and sorts are the n-most highly selective query
predicates. The cost to evaluate a query using the MISS plan with a MISS
number of n is

CostMISS =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n
i=1(CostSegProbe + CostSegRet+

CostSort + CostWrite)+
CostMerge + CostProtProbe+
CostProtRet + (CostCS×∑n

i=1(Sel(Pi) × ||S||)) if number of query
predicates > N

CostSegProbe + CostSegRet+
CostSort + CostWrite)+
CostMerge + CostProtProbe+
CostProtRet if number of query

predicates == N

The actual query optimization process for the cost formula method
happens as follows. First the simple histogram is used to determine the
segment selectivities of all the nongap predicates in the query and the complex
histogram is used to calculate the result protein selectivity. These results
are input into the different cost formulas along with the table and index
information. Then the optimizer evaluates these cost formulas for the CSP,
SSS, and ISS plans, as well as for each MISS(n) plan. Finally, the plan with
the lowest cost formula is returned as the optimal plan and the system uses
this method to evaluate the query.
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11.6 Experimental Evaluation and
Application of Periscope/PS2

In this section we first present an experimental performance evaluation of
the tool Periscope/PS2, which implements the query language and query-
processing techniques described in the previous sections. Then we describe
an actual case study demonstrating the use of this tool in practice.

11.6.1 Experimental Evaluation

In this section, we compare the algorithms presented in section 11.4. The goal
of this section is to present a few key results for comparing the performance
of the individual algorithms; more extensive performance comparison results
can be found in [164]. For all the experiments presented in this section, the
Periscope heuristic optimizer picks the cheapest plan.

Setup. We implemented our query evaluation techniques in Periscope, which
is built on top of the SHORE storage manager from the University of
Wisconsin [65]. SHORE provides various storage manager facilities including
file and index management, buffer pool management, concurrency control,
and transaction management. The commercial system runs on Windows;
Periscope can run on either Linux or Windows. For these tests we used
a Linux 2.4.13 machine with 896 MB of memory, a 1.70 GHz Intel Xeon
processor, and a Fujitsu MAN3367MP hard drive with an SCSI interface and
a 40 GB capacity. In both configurations SHORE is compiled for a 16 KB
page size, and the buffer pool size is set to 64 MB. The numbers presented in
this study are cold numbers, i.e., the queries do not have any pages cached in
the buffer pool from a previous run of the system. Each of the experimental
queries is run five times and the average of the middle three execution times
is presented in the graphs.

In the following experimental sections, the abbreviations CSP, SSS, ISS,
and MISS are all implicitly understood to be implementations of the four
algorithms presented in section 11.4. When appropriate, the MISS plan will
be shown for all possible numbers of query predicates from two to the total
number of nongap predicates in the query, denoted by MISS(n), and the
number of predicates used in the individual MISS plans will be referred to as
the MISS number.

Dataset. To produce a dataset for our experiments, we first downloaded
the entire PIR-International Protein Sequence Database. This database is a
comprehensive, nonredundant protein database in the public domain and
is extensively cross-referenced [434]. Since the PIR dataset contains only
primary protein structures, we then used the Predator tool [134] to obtain
predicted secondary structures. The final dataset consists of 248,375 proteins.
Each protein has approximately 41 segments, which results in 10,288,769
segments. The Periscope protein and segment tables are 259 and 355 MB in
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size, respectively, while in the commercial system the protein table is 390 MB
and the segment table is 425 MB.
Performance comparison. In this experiment we use a complex query
with nine predicates in which both the result protein selectivity and the
various segment selectivities stay constant. The variable in this experiment is
the ordering of the nine query predicates. There are five nongap predicates,
four of which have a segment selectivity of less than .03% (S) and one of
which has a segment selectivity of 7% (L). The result protein selectivity is
fixed at less than .1% by varying the four gap predicates, which are inserted
between every two nongap predicates. Figure 11.9 shows the results of this
experiment in which the position of the large query predicate varies from last
in the query to first.
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Fig. 11.9. Nine-predicate queries, S seg. sel. = ∼.03%, L seg. sel. = 7%, fixed
result sel. < .1%.

The results show that the CSP method is the only method whose
execution time varies widely depending on the position of the large predicate,
which indicates that the execution time of the CSP method is very sensitive to
the selectivity of the first predicate. Due to the nature of the FSM matching
algorithm, queries in which the first predicate matches a large number of
segments (like the L predicate) require the FSM to check more states. Because
the leading predicate matches often, the number of times that the FSM tries
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to match the subsequent predicates increases, which in turn leads to longer
CSP query execution times.

This test also highlights the importance of the MISS number on the
performance of the MISS method. For MISS(2–4) the index is scanned for
various subsets of the four most highly selective predicates, which in this
test are all very selective. In MISS(5), however, the index is also scanned
for the large (less selective) predicate. This adds considerable length to the
execution time (recall that the MISS algorithm picks predicates based on
their selectivities, not their physical order in the query).

The most efficient MISS number, in general, depends on the segment
selectivities and the final protein selectivity. The MISS plan performs a
number of index probes, which reduces the number of proteins to be retrieved
and scanned. There is a balance between the costs incurred from performing
these probes and the costs saved by the reduced number of proteins that must
be retrieved. This balance is also influenced by the result protein selectivity in
that the time required to perform an FSM scan of each protein is also affected
by the result selectivity (we explore this effect in the next set of experiments).
The cost of adding another query predicate to the MISS(k) plan is the sum
of the time to scan the segment index for the (k + 1)th predicate, the time
to sort the results by protein id and start position, and the time to add
these results to the segment merge join. Evaluating the (k + 1)th predicate,
however, will further cut down on the number of protein ids that emerge from
the merge join, which in turn reduces the number of protein tuples that have
to be retrieved. The reduction factor is roughly inversely proportional to the
selectivity value of the added predicate. The time saved is the sum of the
time to probe the id index for the eliminated proteins, the time to retrieve
them, and the time to perform their complex scans. When this time saved is
greater than the time incurred by adding the (k + 1)th predicate, the MISS
number should increase to k + 1; otherwise it is more efficient to remain at
k.

Another important point to notice in Figure 11.9 is that in many cases the
optimal MISS method is an order of magnitude faster than the CSP method!
This experiment demonstrates that having flexible query plans that adapt
to query characteristics can significantly improve query response times. In
addition, this experiment demonstrates that it is possible to evaluate these
complex queries even on the large PIR dataset in few seconds, which allows
the use of this tool in an interactive querying mode.

11.6.2 Example of Application of Periscope/PS2

In this section, we outline an actual application of the Periscope/PS2 tool.
For this study, the PIR dataset described in section 11.6.1 was used.

Background. The common bioinformatic tasks for life scientists are to (1)
infer functional similarity, (2) infer structural similarity, (3) identify domains
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or compact structural regions, and (4) estimate evolutionary relationships
between the target under investigation and the database of characterized
proteins [336]. A variety of computational tools are used for these activities;
however, the majority relate to finding other database entries that share the
primary sequence (i.e., the sequence of amino acids that make up the protein)
similarity and assembling a multiple sequence alignment. From the alignment,
complex judgments are made about the degree of “relatedness” and the
functional implications of the array of potentially similar proteins [33]. If the
target protein is not found to be similar in sequence to any other proteins
with an experimentally determined atomic structure, the entire collection of
aligned protein sequences are processed by secondary structure prediction
algorithms and any common patterns noted. In some cases, the predicted
secondary structure may lead to adjustments in the primary sequence
alignment. This combined analysis often provides the basis for experimental
decisions, for example, which example of an apparently conserved protein to
clone and express, or to identify conserved regions that may bear directly
on function and as such develop a “hit list” of potential point mutants.
As currently practiced by working life scientists, bioinformatics analysis of
proteins is not algorithmic but a complex heuristic process informed not only
by the results of various database searches and computational analyses, but
significantly by the individual scientist’s experience and expert knowledge
of the biology related to the query protein. That is, the analysis actually
generates hypotheses: x is related to y, a and b share the same modular
arrangement of domains, m and n are both DNA binding proteins. These
hypotheses nucleate experimental work on the biological system in question.

In this context, Periscope has a variety of clear applications for life sciences
researchers. A Periscope/PS2 search string encodes local protein topology; as
a consequence, the user is actually performing a direct arbitrary topological
search against a database of protein topologies. To our knowledge, this search
domain is unique to Periscope. Secondary structural pattern searches are of
particular use for investigators studying protein structure and function. A
distantly related protein or remote homolog (i.e., same superfamily but a
different family; see [340] for definitions) will have low sequence similarity
and perhaps escape the statistical significance threshold of the commonly
used BLAST search heuristic [13]. Combining a Periscope/PS2 search with
a sequence-based search will augment the ability to select potential true
homologs and perhaps analogs from unrelated proteins.

Actual example demonstrating the use of Periscope/PS2. A
standard BLASTP search performed on an experimentally uncharacterized
protein, “conserved hypothetical protein from Streptococcus pyogenes” (GI
19745566), returns 14 hits. Buried in the search results in the low-confidence
area, commonly referred to as the twilight zone [337], is the C3 exoenzyme
of C. botulinum (E = 0.025), a bacterial exotoxin of considerable interest. Is
our query protein truly related to the C3 exoenzymes, or is it a member of
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the larger superfamily of ADP-ribosylating enzymes? The sequence BLASTP
query results are suggestive. The secondary structure of GI 19745566
was predicted using SAM-T99sec [213]. Based on the secondary structure
prediction, several Periscope search strings were developed and used to query
the combined nonredundant database described in section 11.6.1.

Table 11.6 shows the final query and a summary of each matching result.
Among the Periscope results is the C. botulinum C3 exoenzyme (PDB code
1GZE). The uncharacterized query protein’s predicted secondary structure
closely matches the experimentally determined secondary structure of the
C3 exoenzyme. Furthermore both proteins are of similar overall length,
and the matching secondary structure spans 56% of the experimentally
determined structure. Based on the combined results of low but detectable
sequence similarity and common local topologies, we can hypothesize that the
uncharacterized S. pyogenes open reading frame is a member of the ADP-
ribosylating toxin family.

In summary, Periscope/PS2 allows direct arbitrary topological searches
through a simple declarative query language. This tool can (1) enhance the
detection of remote protein homology, (2) provide topological information for
the classification of a protein as a remote homolog vs. analog of the query,
and (3) provide a unique tool for exploring loop insertions and deletions in
known protein families.

11.7 Conclusions and Future Work

Knowing the secondary structure of proteins plays an important role in
determining their function. Consequently, tools for querying the secondary
structure of proteins are invaluable in the study of proteomics. This chapter
addresses the problem of efficient and declarative querying of the secondary
structure of protein datasets.

Our contributions include defining an expressive and intuitive query
language for secondary structure querying and identifying various algorithms
for query evaluation. To help a query optimizer pick among the various
algorithms, we have also developed novel histogram techniques to determine
segment and result selectivities. We have implemented and evaluated the
proposed techniques in a native DBMS we have developed called Periscope.
As the experimental results show, the system we have developed can query
large protein databases efficiently, allowing scientists to interactively pose
queries even on large datasets.

There are a number of directions for our future work, including developing
algorithms to produce results in some ranked order. We would like to design
a framework so that the metric used for ranking the answers can be easily
customized by the user, as the model for ranking proteins is usually not
fixed but instead varies among scientists and may also change frequently
during the course of an experiment. The ranking metric may take into account
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Table 11.6. Results for the query <h 4 6> <? 6 12> <h 6 10> <? 17 30> <h 10
15> <l 4 20> <h 7 20> <l 8 20> <h 10 20> <l 3 6> <e 4 8>.

Accession Description Match
number

5-methyltetrahydrofolate-homocysteine S- 352
AD1845 methyltransferase [imported] - Nostoc sp. (strain to

PCC 7120) 464
Lysine-tRNA ligase (EC 6.1.1.6) [imported] - 390

E86671 Lactococcus lactis subsp. lactis (strain IL1403) to
488

NAD-asparagine ADP-ribosyltransferase (EC 53
A38912 2.4.2.-) C3 precursor - Clostridium botulinum to

phage (strain CST) 171
Hypothetical protein Rv0200 - Mycobacterium 117

E70838 tuberculosis (strain H37RV) to
224

Lipoprotein [imported] - Mycoplasma pulmonis 123
D90551 (strain UAB CTIP) to

240
Protein B0238.6 [imported] - Caenorhabditis 32

C89045 elegans to
154

GGDEF family protein VC1029 [imported] - 107
C82251 Vibrio cholerae (strain N16961 serogroup O1) to

228
Coenzyme PQQ synthesis protein - 139

D69105 Methanobacterium thermoautotrophicum (strain to
delta H) 252
Probable involvement in cytoskeletal organization - 1253

T41643 fission yeast (Schizosaccharomyces pombe) to
1361

Chain A, structure of the Clostridium botulinum 13
1GZE C3 exoenzyme (L177c mutant) to

132
20

747707 Exoenzyme C3 [Clostridium botulinum D phage] to
138

ARC3 CBDP mono-ADP-ribosyltransferase C3 53
P15879 precursor (exoenzyme C3) to

171

additional information that is present in the protein, such as the positional
probability of the secondary structure, which is currently one of the fields
produced as output by protein structure predication tools. Techniques that
have been developed for ranking results in other contexts may be applicable
here [117, 118, 295].

Search engines for querying biological datasets often employ a query-
by-example interface. In BLAST, one of the most popular search tools for
searching genes and the primary structure of proteins, the system is presented
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with a query sequence and the search engine finds the best matches to
the sequence. The input sequence is converted into a set of segments, and
segment-matching techniques are employed to evaluate the query. While our
work presented in this chapter focuses on segment-matching techniques for
querying on the secondary structure of proteins, we would also like to explore
the use of a query-by-example interface for our current system. Query-by-
example interfaces require additional input that allows the user to influence
the mapping of the query into segments to be matched. This additional input
can be fairly complex; as an example the user may be allowed to specify a
scoring matrix to assign weights to different portions of the input query. The
“right” interface for specifying this mapping model can vary among users, and
designing an interface that is both intuitive and easily specified is a challenge
that we hope to undertake as part of our future work.

Experiments in the life sciences often involve querying a number of
biological datasets in a variety of different ways. For example, a scientist
may first query on the primary structure of a protein and then on the
secondary structure or vice versa. Ideally a combination of both primary
sequence and secondary structure searches will lead to more accurate protein
function discovery [307]. This chapter addresses only the issue of efficient
query-processing techniques for secondary structure. Hence the tool we have
built would be an addition to the suite of biological querying tools that exist
today. Developing techniques for integrated and declarative querying on all
protein structures is an interesting database problem, and it is part of the
long-term goal of the Periscope project.

Acknowledgments

This research has been supported in part by donations from IBM and
Microsoft.



Chapter 12
Scalable Index Structures for Biological Data

Ambuj K. Singh

Summary
Bioinformatics holds great promise for the advancement of agriculture,
public health, drug design, and the understanding of complex medical
and biological systems. For this promise to come to fruition, new query
algorithms, data models, and data management techniques need to be
developed that can provide access to the varied kinds and large amounts
of biological data. This chapter presents scalable index structures for
DNA/protein sequences, protein structures, and pathways. After a brief
discussion of sequences and structures, the focus shifts to pathways.
Modeling of pathways along with their qualitative and quantitative
characteristics is considered. Techniques that allow comparison and
querying of static and dynamic aspects of pathways are presented.

12.1 Introduction

As a result of the recent spurt in high-throughput techniques, new biological
data are being acquired at phenomenal rates. With such a rapid growth,
biological datasets (e.g., sequence, structure, expression array, pathway) have
become too large to be readily accessible for homology searches, mining,
adequate modeling, and integrative understanding. Scalable and integrative
tools that access and analyze these valuable data need to be developed.

The growth in genomic information has spurred increased interest in large-
scale comparison of genetic sequences. Comparative genomics analyzes and
compares the genetic material of different species to identify genes and predict
their functions. Genome analysis involves comparison of sequences as large
as the whole genome of a species. Phylogenetics and evolutionary studies
are other important applications that use complete genetic information
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of different species. Shotgun assembly of a genome also requires rapid
identification of overlaps across millions of reads. It is obvious that new
approaches for large-scale comparison of sequences are needed.

Akin to the growth of sequence databases, protein structure databases,
expression array databases, and pathway databases have also been recording
significant growth. These databases are intrinsically different from sequence
databases. For example, in the case of protein structures, common queries
ask for the best alignment (in terms of root mean square distance) of a given
query protein to a set of target database proteins. The desired alignment
can be either global (i.e., using the entire query, say, for the construction of
evolutionary trees or classifications), or local (i.e., using parts of the query
to find the active sites). Computing the best alignment is an expensive step
if it has to be repeated for all protein structures in PDB [39] or for the
larger number of predicted structures [344]. Structure comparison defines
the conserved core of a protein family by isolating the common ancestry of
proteins. This allows one to go beyond the “twilight zone” where similarities
cannot be detected reliably using sequence alone. Predicting the function
of proteins in silico is of great benefit since it is faster and cheaper than
experimentation. Characterization and understanding of protein structures
is important for identification of functional motifs and understanding of
principles underlying the structure and dynamics of proteins.

Just as sequence and structure databases require the design of new
techniques to access, manipulate, and mine datasets, pathway databases
require the design of new techniques for accessing, comparing, and
manipulating large graphs. There is significant semantics attached to the
nodes (substrates, products) and edges (enzymes, reaction control) of such
graphs. There is also a need to identify common motifs such as modules in
the constructed pathways and to make predictions based on them.

It is evident that the exploding growth in biological data is on a collision
course with current database query techniques, presenting new challenges
to biological database design. The new generation of databases have to (a)
encompass terabytes of data, often local and proprietary, (b) answer queries
involving large and complex inputs such as a complete genome, and (c) handle
highly complex queries that access more than one dataset (e.g. “find all genes
that are structurally similar to a given gene and express similarly over a
specific DNA microarray dataset”; “find all proteins that are structurally
similar to a given protein, used in a given pathway, and are expressed similarly
as another given protein in a given experiment”; “find all protein pairs that
are less than 30% similar at a sequence level, share a given active site, and
cooccur in some metabolic pathway”).

The complexity, heterogeneity, and quantity of biological data also raise
difficult issues in the area of data models. Flexible and complex access to
biological databases require a model in which information can be stored and
queried. There is a need to develop new data models that are sensitive to
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the novel characteristics of biological data and queries. Current databases
use ad hoc models that can answer a predefined set of queries and meet the
requirements of only parts of the scientific community. The static information
about the modeled entities (genes, protein structures, enhancers, and so on)
needs to be coupled with dynamic information such as metabolic pathways,
regulatory networks, feedback mechanisms, and protein trafficking. There is
an increasing demand for the integration of diverse information sources in
order to answer complex queries. For example, to understand the differences
in protein localization between normal and diseased cells, one will need to
understand and query the entire dynamic process, including abnormalities
at the DNA level and events during transcription, translation, and signaling.
Unified models will facilitate the integration of currently disparate data.

This chapter focuses on algorithms and index structure for comparative
analysis of sequences, structures, and pathways. The discussion of index
structures for sequences and structures is presented in the next two sections.
In each case, existing techniques are surveyed and brief outline of a specific
index structure is presented. Pathways are considered in detail in section 12.4.
Structural comparison of pathways and analysis of their dynamic properties
is presented. A brief summary appears in section 12.5.

12.2 Index Structure for Sequences

The dynamic programming solution to the problem of finding the best
alignment between two sequences of lengths m and n runs in O(mn) time
and space [296, 374]. For large data and query sequences, this technique
becomes infeasible in terms of both time and space. Many heuristics-based
search tools have been developed to perform faster sequence alignment. These
can be classified into two categories: (1) hash table based and (2) suffix
tree based. Some of the important hash table based tools are FASTA [313],
BLAST [12], PSI-BLAST [13], MegaBLAST [455], BL2SEQ [393], WU-
BLAST [146], SENSEI [387], FLASH [61], PipMaker (BLASTZ) [355],
BLAT [218], GLASS [32], and PatternHunter [260]. These techniques are
similar in spirit: they construct a hash table on either the query sequence or
the database sequence (or both) for all possible substrings of a prespecified
size (say, l). The value of l varies for these search tools and for different
applications (e.g., BLAST uses l = 11 for nucleotides and l = 3 for proteins.).
They start by finding exactly matching substrings of length l using this hash
table. In the second phase, these seeds are extended in both directions and
combined, if possible, to find better alignments.

There are also a number of homology search tools based on suffix trees
(see [160] for suffix tree algorithms). These include MUMmer [98], QUASAR
[60], AVID [50], and REPuter [237]. QUASAR builds a suffix array on one
of the sequences and counts the number of exactly matching seeds using this
suffix array. If the number of seeds for a region is more than a prespecified
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threshold, this region is searched using BLAST. REPuter builds a suffix tree
on a sequence to find repetitions on the fly. MUMmer builds the suffix tree on
both sequences to find maximal unique matches. These tools are suitable for
highly similar sequences. Extensive memory requirements make these tools
infeasible for large-scale genome comparison.

12.2.1 Indexing Frequency Vectors

It is difficult to design scalable search techniques in the string space. We now
present a scalable indexing technique [208, 210] that transforms the sequence
information into a vector space with the help of frequency vectors, constructs
an index structure on frequency vectors, and uses their proximity to identify
homologous substrings.

Given a sequence over an alphabet, the number of occurrences of each
symbol defines its frequency vector. For example, if CTACCATTAG is a
DNA sequence, then its frequency vector is [3, 3, 1, 3] ([number of As, Cs, Gs,
and Ts]). An edit operation alters a string by inserting, deleting, or modifying
a symbol. An edit distance between strings can be defined as the minimum
number of edit operations needed to transform one string into another. An
analogous measure on frequency vectors, called frequency distance, can be
defined. An edit operation on a string transforms its frequency vector to a
neighboring point in the frequency space. The frequency distance FD(u, v)
between two frequency vectors u and v is the minimum number of edit
operations required to transform some sequence with frequency vector u
into some sequence with frequency vector v. Clearly, the frequency distance
between two sequences is a lower bound of the edit distance between them.
This property can be used for pruning a search for similar sequences as
follows. For each sequence, its frequency vector is computed. Then, instead
of computing the edit distance between two sequences, one can just compute
their frequency distances, which requires less computation and main memory.
If the frequency distance is above a certain threshold, then the edit distance
must also be above the threshold; only if the frequency distance is below the
threshold, do the actual sequences need to be compared.

To find similar regions between two genomes, one can compute for each
genome the frequency vectors for all substrings that are of a certain length
w, the window size. When frequency vectors from the two genomes are close
together, it indicates that the corresponding regions of the sequence may
align well. The choice of w affects the precision and speed of the technique: a
larger w leads to faster computation at the risk of missing short alignments.

Multiple frequency vectors are aggregated into an index structure called
the F-index. An F-index is a set of boxes (the number of dimensions is
defined by the size of the alphabet). For a number of consecutive frequency
vectors from the same sequence, their minimum bounding rectangle (MBR)
is computed and added to the index. The maximum number of points in each
box is termed its box capacity. For each box in the F-index, its lowest and
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Fig. 12.1. Different steps of index creation: (1) extraction of subsequences of fixed
length from database sequence, (2) transformation of information into vector space,
(3) creation of an MBR, (4) insertion of MBR into F-index.

highest coordinates are stored. As the box capacity increases, the number of
boxes in the F-index decreases. Thus, the memory usage of the F-index goes
down. However, boxes containing more points are generally larger, leading to
more false hits. The process of index creation is shown in Figure 12.1.

To align two genomes, an F-index is created on one of them and a
number of points (frequency vectors) is extracted from the other. The next
step is to find all box-point pairs that match. If a point and a box match,
the corresponding parts of the two genomes have to be aligned. This is
recorded in the match table, a data structure that provides a memory-efficient
representation of which substrings must be aligned and is suitable for deciding
on an optimal I/O schedule. The regions of good matches as identified by the
match table can be used by an extensive sequence alignment tool such as
BLAST [12, 13] for processing. This technique is termed MAP, for match
table based pruning.

Experimental results show that MAP runs up to two orders of magnitude
faster than BLAST without decreasing the output quality. Furthermore,
MAP can work well even with small memory sizes. This drastic reduction
in CPU and I/O cost makes homology searches viable on desktop PCs. The
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filtering and scheduling techniques of MAP can easily be used to speed up
and reduce the memory requirements of any of the current local alignment
tools. MAP also provides the user with a coarse-grained visualization of the
similarity pattern between the sequences prior to the actual search.

12.3 Indexing Protein Structures

Structure is believed to be more closely related than sequences to the
function of proteins. For example, the helical cytokines form an extended
family that is undetectable by sequence comparison [143, 339, 385]. Structure
comparison defines the conserved core of a protein family by isolating the
common ancestry of proteins. This allows one to go beyond the “twilight
zone” where similarities cannot be detected reliably using sequence alone.
Predicting the function of proteins is a key challenge facing computational
biology in the next few years as much of the benefits of molecular biology
will depend on understanding the functions of proteins. The potential
benefits of computationally predicting functions are huge since it is faster
and cheaper than experimentation, thus allowing laboratories to focus on
verifying computational predictions. Characterization and understanding
of protein structures are important for identification of functional motifs
and understanding of principles underlying the structure and dynamics of
proteins.

The three-dimensional structure of protein adds insight into its molecular
mechanism. For example, the structure of TATA box binding protein when it
is bound to DNA not only provides information about molecular interactions
but also clues about DNA binding specificity. Comparison of all structures
against each other can produce new structural and functional relationships
between proteins. Structure based distance measures are also critical in
constructing accurate phylogenies [79, 141]. Structural alignment is also used
during prediction of protein folding using threading.

The key problem in structural alignment of protein structures is to find
the optimal correspondence between the atoms in two molecular structures.
It is not known which molecules of one structure correspond to the other.
This makes an exhaustive search intractable and heuristics are frequently
employed. The root mean square distance (RMSD) between the aligned atoms
of two aligned structures is typically taken as a measure of the quality of the
alignment. Given a correspondence, the problem of optimally aligning two
structures through rotation and translation so that the RMSD is minimized
can be solved efficiently [20].

There are essentially three classes of algorithms for structural alignment
of proteins [113]. The first set performs structural alignment directly at the
level of constituent carbon atoms. The second group of algorithms first uses
SSEs (secondary structure elements) to carry out an approximate alignment
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and then uses the carbon atoms. The final group of algorithms uses geometric
hashing [433].

Direct alignment of carbon atoms. The simplest algorithm for structural
alignment uses dynamic programming to find the optimal correspondence.
Each iteration of the algorithm begins with a correspondence. The alignment
that minimizes the RMSD metric for this correspondence is found. This
alignment defines a score between pairs of atoms. Dynamic programming is
then used to find a possibly better correspondence. The process is repeated
until convergence. The DALI algorithm [182] uses distance matrices to align
proteins. A distance matrix contains all pairwise distances between atoms of a
molecule. Distance matrices of two molecules are compared to find regions of
similar patterns of distances, which indicate similarities in their 3D structure.
There are a number of other algorithms that align protein structures directly
using carbon atoms [367, 394, 395].

Hierarchical algorithms. Hierarchical algorithms are based on rapidly
identifying correspondences between small similar SSE fragments (consisting
of 2 or 3 SSEs) across two proteins. The similarity of two fragments is defined
using length and angle constraints. Fragments that do not align within a
specified tolerance can be pruned away, saving considerable computation
time. At the same time, fragment pairs that align well form the seed for
extensive atom-level alignments. The VAST algorithm [263] begins with a
bipartite graph: vertices on one side consist of pairs of SSEs from query
protein and vertices on the other side consist of pairs of SSEs from target
protein. An edge is placed between two pairs of SSEs if they can be aligned
well. A maximal clique is found in this bipartite graph; this defines the initial
SSE alignment. This initial alignment is extended to carbon atoms by Gibbs
sampling. A nice feature of the VAST program is its ability to report on the
unexpectedness of the match through P values. A P value is computed by
considering the size of the match, the size of the proteins, and the quality of
the alignment. A number of other algorithms in the literature are also based
on hierarchical alignment [62, 368].

Geometric hashing based algorithms. Geometric hashing based
algorithms choose a set of reference frames from each database protein and
place the other elements of the protein in a 3D grid (hash table) based
on each reference frame. Given a query protein, a set of reference frames
is again chosen and the placement of elements of the query protein is
computed for each query reference frame. Every time a query element and a
database protein element share a grid cell, a vote is assigned to the database
protein, its corresponding reference frame, and the query reference frame. A
score is tallied for each database protein reference frame, and all reference
frames with scores above a threshold number of votes are isolated. Each
such reference frame defines an alignment between the query protein and
a database protein. Further refinements can be carried out on this initial
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Fig. 12.2. Different steps of SSE index creation: (1) extraction of neighboring
SSEs for a given SSE, (2) construction of a feature vector that summarizes the
neighborhood of the SSE, (3) insertion of the feature in an R*-tree.

alignment. Implementations of this general idea differ in the way reference
frames are defined. The 3D lookup algorithm [183] defines reference frames
using SSEs. Another algorithm [303] defines reference frames based on carbon
atoms.

12.3.1 PSI: Index Structure on SSEs

We present a hierarchical search and alignment [62] technique that is aimed
at efficiently pruning proteins dissimilar to a given query. In this technique,
each SSE is approximated by a vector, and triplets of spatially neighboring
vectors are extracted. For each triplet, information on pairwise angle and
distance (minimum and maximum) is extracted; this generates a feature
vector of 9 dimensions. Later, an R*-tree [35] is built on this feature space
using minimum bounding rectangles (MBRs). The process of index creation
is shown in Figure 12.2.

The search technique finds high-quality seeds by pruning dissimilar
proteins, achieved in four steps. First, similar triplets (of SSEs) of dataset
proteins and query protein are found using the index structure. Second, a
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triplet pair graph (TPG) is constructed on the similar triplet pairs. The
vertices of the TPG correspond to triplet pairs and the weight of a vertex
indicates the unexpectedness of the match. An edge is placed between triplet
pairs whose alignment is consistent. A connected component of the TPG
corresponds to a set of triplet pairs that can be combined to find mappings
of larger number of query SSEs to dataset SSEs. Next, depth-first search is
used to find the largest weight connected component (LWCC) of the TPG. The
LWCC of the TPG is the subset of the triplet pairs that results in the highest
scoring mapping of query SSEs to dataset SSEs. Finally, a bipartite graph
is constructed on the LWCC. This bipartite graph consists of SSEs from the
query protein and the database protein that are present in the LWCC. The
weight of an edge indicates the quality of the alignment of the corresponding
pair of vertices. A largest weight graph matching algorithm [135] is run on
the bipartite graph to find a mapping of the vertices in the two sets that
maximize the sum of edge weights. The resulting mapping defines a seed
(potential alignment) for each target protein.

Each seed defines an alignment of the query protein to a target protein in
the feature space. A statistical model is developed to calculate the P value
of a seed. This value corresponds to the probability of having a seed at least
as good as the given one in a randomly distributed space. Therefore, small
P values correspond to unexpected matches. Target proteins that have high
P values are eliminated.

Experimental results show that this technique classified more than 88%
of the superfamilies of SCOP [83] correctly. More than 98% of the results
concurred with those of VAST [263]. The technique also ran 3 to 3.5 times
faster than VAST’s pruning step.

Protein structure search is an important emerging application. The
explosive increase of the size of the structure databases and the complexity
of the search algorithms make faster techniques imperative. Index-based
techniques are an important step in this regard and will be widely applicable
for homology searching, multiple structure alignment, and motif discovery.

12.4 Comparative and Integrative Analysis of Pathways

Biological pathways define how genes, proteins, RNAs, and other molecules
cooperate and compete to produce the necessary functional activities in
cells. They provide the glue for other diverse information sources such as
DNA/protein sequences, protein structures, microarrays, and image data.
Our current understanding of biological pathways is incomplete; there is
much that is not known about causality, kinds of reactions, spatiotemporal
localization of reactions and molecules, control and feedback mechanisms, and
quantitative information on reaction rates and metabolite concentrations.
Significant advances in understanding can come about by integrating
information from multiple data sources, by comparing and contrasting the
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accumulated information, and by asking what-if questions of in silico models.
Following are some of the current challenges in the analysis of pathways.

• Algorithms and tools for the comparison of qualitative pathway
information. Logical and causal information about pathways is usually
captured using graphs in which nodes and edges are annotated with
genes, enzymes, and reactions. The comparison of these graphs is valuable
for understanding the similarity of given pathways with respect to their
inherent structure and evolutionary relationships.

• Algorithms and tools for the comparison of dynamic behavior of
cell models. The simulation of quantitative pathway models results
in spatiotemporal traces of attribute values (enzyme or metabolite
concentration at different locations within a cell). The comparison of such
traces can be informative for comparing the dynamic behavior of pathways.
Integrating pathway simulations with other time-based data sources such
as expression arrays and cellular images also requires the comparison of
different time traces.

• New database tools for the integrated analysis of pathways. Inference
of new pathways requires that multiple biological data sources such as
DNA sequences, protein sequences, protein-protein interactions, protein
structures, and expression arrays be integrated. To understand these
diverse data sources, one needs to use a common data model and query
distributed and heterogeneous information sources simultaneously.

A database of pathway models for different pathways can be used for
comparative and integrative analysis. The behaviors of these pathways can
be compared with each other, validated with observed data, and integrated
with other information sources. With regard to the analysis of pathways, one
needs to investigate the steady-state behavior as well as the dynamic response
of a system. Both the time-invariant behavior and the time-variant behavior
of pathways need to be considered.

Recent research on pathways has been quite broad, ranging across
inference, simulation and modeling, predictions, and analysis. This section
focuses on the comparative and integrative analysis of pathways. After a brief
discussion of pathway models, the focus shifts to the comparison of pathways
modeled as graph structures and the comparison of multidimensional time
series that arise when time-variant properties of pathways are studied. The
former concerns static properties of pathways while the latter concerns their
dynamic properties.

12.4.1 Pathway Models

Organisms have elaborate mechanisms (pathways) for flow of energy,
synthesis of complex biomolecules, degrading and transporting materials,
sending and receiving signals, regulation of transcription and translation,
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homeostasis, apoptosis, and so on. Pathways form the basis for nearly
every process of living things, from moving around and digesting food to
thinking and reproducing. Not surprisingly, a large proportion of these
chemical processes are shared across a wide range of organisms. Nearly
all biochemical processes are catalyzed reactions, requiring the presence
of enzymes, proteins obtained through transcription and translation from
DNA. A complete understanding of the cellular pathways is the holy grail of
systems biology since pathways determine the varied cellular functions and
their breakdown leads to various diseases. The development of microarrays
and high-throughput cellular imaging, which permit the measurement of
spatiotemporal expression of proteins, have provided a major impetus to the
study of pathways.

A large number of pathway databases are currently available, for example,
KEGG [211], EcoCyc [212], and WIT [430]. KEGG (Kyoto Encyclopedia of
Genes and Genomes) is a repository of metabolic pathways for organisms
whose genome has been completely sequenced. It provides information on
molecular and cellular biology in terms of interacting molecules or genes.
EcoCyc was originally a database for metabolic pathways in Escherichia
coli. It has been extended to other microbial organisms to produce the
MetaCyc database. WIT (What Is There) is another database that provides
information on gene and operon organization, as well as information about
metabolic networks for completely or partially sequenced genomes.

There have been a number of approaches in recent years toward modeling
the statics and dynamics of biological networks [96]. The modeling of
the static and causal relationship is usually carried out through graph-
based models of the kind represented in KEGG and EcoCyc. Quantitative
information can be introduced into such graphs through conditional
probabilities (Bayesian networks [133]). The on/off status of a gene in
a regulatory network can be modeled through booleans in a Boolean
network [379]. Here, the current state of the regulatory network is a set
of booleans, and a set of connections (rules) defines the next state of the
system. The 0-1 state of each gene has been generalized to a discrete number
of states in a logical network [399]. A notion of logical steady states is defined
to characterize the system when its logical state equals its image.

Differential equations of various kinds have been widely used to model
biological pathways. Rate equations expressing the rate of change of a
molecule as a function of the concentrations of other molecules can be written
down [85, 412]. The dynamics of regulatory systems in terms of the feedback
loops, negative (stable periodicity) or positive (multistationarity), can be
studied [153, 398]. Other approaches include piecewise-linear differential
equations [111], the use of power-law functions [347], and qualitative
differential equations [9].

Differential equations presuppose that concentrations of molecules vary
continuously and deterministically. These assumptions may not hold for small
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number of molecules and fluctuations in the timing of cellular events. This has
led to discrete and stochastic models [19, 144]. Stochastic simulation results
in a closer approximation to cellular events.

Hybrid petri nets [271], which extend petri nets by adding continuous
places and continuous transitions, have also been used to model pathways.
A continuous place holds a positive real number and a continuous transition
fires continuously at a speed determined by the values in the places.

12.4.2 Structural Comparison of Pathways

To study the evolutionary relationships between organisms, various methods
can be employed to estimate when the species may have diverged from
a common ancestor. Having this information allows construction of a
phylogenetic tree in which species are arranged on branches that link them
according to their relationships and/or evolutionary descent. The most
popular and frequently used methods of tree building can be classified
into two major categories [297]: phenetic methods based on distances and
cladistic methods based on characters. The former measures the pairwise
distance/dissimilarity between two organisms and constructs the tree totally
from the resultant distance matrix. In the latter, all possible evolutions are
considered and trees are calculated using parsimony or likelihood methods.

Construction of phylogenetic trees for a group of taxa requires information
about their evolutionary history. Historically, morphological data was used for
inferring phylogenies. However, the abundance of DNA/RNA sequence data
currently available for a variety of organisms has led to phylogenetic inference
based on these data. Most of the phylogeny algorithms rely on multisequence
alignments [125] of cautiously selected characteristic sequences: sequences of
a single protein or single gene from each organism. Numerous studies have
used the ribosomal RNA 16S sequences because these sequences exist in all
organisms and are highly conserved [94, 264].

However, in spite of the success of rRNA taxonomy, the evolutionary
relationships between major groups of organisms are still unclear because
phylogenetic analysis of single gene sequences lacks the information to resolve
deep branches in the tree. Further, misalignment and differing evolutionary
rates can result in phylogenetic trees with the wrong topology. The recently
completed sequences of several organism genomes provide an enormous
amount of data with which to address some of these problems. Phylogenetic
analysis can be made on sequence comparison of the whole genome [128] and
can lead to more precise studies.

Understanding of evolutionary relationships may be further expanded
by comparing higher level functional components among species, such as
metabolic pathways. In such pathways, enzymes, substrates, and reactions
are grouped conceptually into networks as part of a dynamic information
processing system. A metabolic pathway is a series of individual chemical
reactions in a living system that combine to perform one or more important
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functions (for example, glycolysis and the Krebs cycle). Comparative
analysis of metabolic pathways in different genomes yields important
information on their evolution. Studies in this direction focusing on individual
pathways [129, 130] or on the entire metabolic repertoire [253] have been
attempted. Such analysis allows us to measure evolution of complete
processes (with different functional roles) rather than individual elements of a
conventional phylogenetic analysis. We now present a graph based technique
for constructing a phylogenetic tree using the structural information inherent
in the metabolic pathways of different organisms [175].

Since evolutionary distance is based on the divergence of the elements
constituting the pathways as well as the divergence of the network structure,
both these aspects can be combined in formulating a measure of distance
between pathways. The former aspect of the distance, i.e., the similarity
between two enzymes, can be defined using the sequence similarity of
the corresponding genes, or the structural similarity of the corresponding
proteins or the similarity between EC (enzyme classification) numbers of the
corresponding reactions [301].

Our graph based technique of building phylogenetic trees from metabolic
pathways is divided into three steps [175]. In the first step, enzyme graphs
are constructed for a specific metabolic pathway from a set of organisms
under study. In the second step, a pairwise comparison of these enzyme-
enzyme relational graphs is performed. This yields a distance matrix between
organisms. Using this matrix, a phylogenetic tree is computed in the final step
with the help of existing software packages. These steps are detailed next.

Step 1: Obtaining enzyme graphs from pathways. The collection of
reactions and enzymes that an organism uses to achieve a certain metabolic
function determines the architecture and topology of the pathway. Metabolic
pathways can be abstracted as reaction graphs (networks) with specific graph-
topological information, such as connectivity. A metabolic pathway can be
represented as a directed reaction graph with substrates as vertices and
directed edges denoting reactions (labeled by enzymes) between them. Given
a pathway or a group of pathways, binary relations are extracted between
enzymes [151, 304] as follows. Two enzymes are related if they activate
reactions that share at least one chemical compound, either as substrate
or as product. In the enzyme graph G = (V, E) for a given pathway P , the
vertex set V consists of the enzymes present in the pathway P and the set
of edges E represent the enzyme-enzyme relationships of the pathway. There
exists a directed edge from enzyme e1 to enzyme e2 in G if e1 activates some
reaction A → B (with substrate A and product B) and e2 activates some
reaction B → C (with substrate B and product C).

Step 2: Pairwise comparison of enzyme graphs. Each enzyme graph
is specific to a particular organism. A distance matrix between organisms
can be computed by performing a pairwise comparison of these graphs. This
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is achieved using a new algorithm that combines similarity between objects
represented by the nodes of the graphs and information on the structure
of the enzyme graph. To define a similarity measure between the enzymes
of the graph, different notions of relationships between nodes of the graphs
(enzymes) can be exploited: sequence similarity of the corresponding genes,
structure similarity of the corresponding proteins, or similarity between EC
numbers. In the experimental results presented later, the functional hierarchy
of the EC number is used to express this similarity. Each of the enzymes
that constitute a pathway is classified according to its EC number, which
consists of four sets of numbers that categorize the type of the catalyzed
chemical reaction. A similarity value of 1 is used if all four digits of the two
reactions are identical, 0.75 if the three first digits are identical, 0.5 if the two
first digits are identical, 0.25 if the first digit is identical, and 0 if the first
digit is different. By applying a pairwise comparison to a set of N enzyme
graphs, an N ×N similarity matrix is obtained. The similarity scores ranging
from −1 to 1 can be interpreted as distances by using the following formula:
distance = 1 − score.

Step 3: Building phylogenetic trees from distance matrices. From the
computed distance matrix, a phylogenetic tree is computed with hierarchical
clustering algorithms. These cluster methods construct a tree by linking the
least distant pair of taxa, followed by successively more distant taxa. There
is a wide variety of distance based clustering algorithms constructed with
differing sets of assumptions [342, 375]. The “neighbor joining” algorithm
from the Phylip (phylogenetic inference) package [124] is used to construct
the phylogenetic trees.

Experimental results. Phylogenetic trees were constructed for four
different sets of organisms from the KEGG database. A set of 72 organisms
was selected by removing all the organisms that have less than three enzymes
present in the glycolysis and citric acid cycle pathways. A second set of 48
organisms was selected by collapsing all organisms with exactly the same
network in the glycolysis and/or citric acid cycle pathways. The third set
of 16 organisms is the set of organisms considered by Liao et al. [253]. The
fourth set is composed of eight organisms, two of them from the eukaryota
domain, two others from the archaea domain, and the remaining four from
the bacteria domain. For this set of eight organisms, phylogenetic trees were
derived by considering a set of pathways instead of a single pathway.

The effectiveness of this graph based technique was evaluated by
comparing the produced phylogenies with the NCBI taxonomy (or the 16S
rRNA based tree) and obtaining a single similarity measure (The cousins
tool [450] was used for computing the similarity measures.). Comparative
evaluation of the method was carried out by examining a few other existing
techniques, comparing their trees again with the NCBI taxonomy to obtain
their similarity measures, and comparing the similarity measures with those
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produced by the graph based technique. One specific alternative technique
was the NCE (number of common enzymes) method motivated by [129, 130],
in which phylogenetic analysis is based on the number of common enzymes
between two organisms. Results are presented here only for 16 organisms
based on the glycolysis pathway and 8 organisms based on carbohydrate
metabolism. Complete names of organisms and other details can be found in
[175].

Figure 12.3 depicts the phylogenetic tree computed for the set of 16
organisms. The two mycoplasma MGE and MGN have a low distance of
0.05 and are clustered together. They are the two closest organisms. The two
archaea AFU and MJA are also grouped together. The similarity measures
using the NCBI taxonomy as the standard are shown in Table 12.1 for the
graph based technique and three others: NCE, 16S rRNA, and Liao et al.’s
method. The graph based technique outperforms the other techniques. Table
12.2 shows the similarity measures when the 16S rRNA tree is chosen as the
standard. The graph based technique again obtains the best alignment.
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Fig. 12.3. Phylogenetic tree for 16 organisms built from comparison of glycolysis
pathway.

Figure 12.4 depicts the phylogenetic trees computed for the set of 8
organisms based on carbohydrate metabolism. The two archaea AFU and
MJA are the two closest organisms with a distance of 0.55. They form a
separate cluster in the phylogenetic trees. The two eukaryota RNO and MMU
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Table 12.1. Similarity measures based on the NCBI taxonomy for the glycolysis
pathway.

Technique Similarity
Graph based technique 0.26

NCE technique 0.19
16S rRNA 0.22

Liao et al.’s technique 0.16

Table 12.2. Similarity measures based on the 16S rRNA tree for the glycolysis
pathway.

Technique Similarity
Graph based technique 0.27

NCE technique 0.18
Liao et al.’s technique 0.12

are also grouped together with a distance of 0.78. RNO is the closest organism
to MMU. In the tree, the bacteria CPE, HIN and LIN are clustered together.
The proteobacteria NME has a lower distance to the archaea AFU and MJA.
The three of them belong to the prokaryote classification.
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Fig. 12.4. Phylogenetic trees for the dataset of 8 organisms built from comparison
of carbohydrate metabolism.

The presented graph based technique has considered only the reaction
types of the enzymes in labeling the nodes and in defining node similarity.
Further refinements of this general approach may lead to more accurate
representation of pathways and distance computation. For example, the nodes
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can be labeled with enzymes and the sequence/structure distance between
the corresponding proteins considered in defining distance measures. Another
approach toward refining the graph representation is to include substrate
information along with the reaction types to distinguish between enzymes
that have the same EC number. Distance between substrates could be defined
using their chemical formulae.

Computation of phylogenies is just one direct use of the pathways. Being
closer to functions, pathway databases provide the clue for the ultimate
understanding of biological processes. Supporting access to pathways as a
part of a general query language requires a data model that is sophisticated
enough to combine data from heterogeneous sources. Ultimately, one wants
to answer queries such as “find all proteins that are structurally similar to
protein X, which allosterically controls a reaction in the glycolysis pathway of
organism Y” or “find all transcription regulatory elements for enzymes that
occur in the heat shock pathway.”

As the biological pathways and protein-protein interactions are
understood better, the information about pathways will include qualitative
as well as quantitative data. The qualitative data will include information
on the enzymes, the substrates, and the type and direction of reactions.
The quantitative data will include information on the rate of reactions, the
flux, and the kind of control and feedback. One of the goals of systems
biology is to characterize and classify the pathway information at a higher
level. This is likely to result in the isolation of pathway modules or
subgraphs. Providing mechanisms to store and query the pathway datasets
qualitatively, quantitatively, and at multiple levels (viz. based on type of
interacting modules) is one of the database challenges of the future. Aspects
of quantitative comparison of pathways using their time-invariant and time-
variant properties are considered next.

12.4.3 Analysis of Time-Invariant Properties of Pathways

Schilling et al. [351] propose the idea of extreme pathways for analyzing
the inherent characteristics of pathways. They analyze the capabilities of
a pathway in terms of its invariant fluxes: all possible concentrations of
metabolites at steady state. A stoichiometric matrix S (m × n, where m
is the number of metabolites and n is the total number of inputs/outputs
and reactions) is defined for each pathway. At steady state, the rate of
change of metabolites is 0. This means that a steady-state flux v satisfies
the equation S.v = 0. Furthermore, the constraints regarding internal fluxes
(rates of reactions being positive) and external fluxes have to be met. All
the steady-state solutions lie in the positive orthant of the null space of
S, generating a convex polyhedral cone in a high-dimensional space. The
extreme pathways are the rays of this cone, ensuring that each interior point
can be written as their nonnegative combination. The solution for extreme
pathways for a realistic pathway can be expensive, necessitating a division
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into subsystems that are analyzed separately and later combined under some
integration constraints [352].

The formalization of extreme pathways raises a number of interesting
questions: How does evolution change the extreme pathways? Is there a
separate control mechanism for each extreme pathway so that the entire cone
can be spanned? Answering these biological questions requires that research
be carried out on the comparison of pathways based on their steady-state
flux cones. Some relevant database queries may be as follows.

• Does a given flux lie within the cone of a specified pathway?
• What is the similarity of two pathways (defined by considering the volume

of the intersected steady-state cones)?
• What are the most similar pathways for a given pathway (again using the

steady-state flux cones)?

Clustering the steady-state cones or predicting a phylogenetic tree
based on them may be other useful operations. Common to all the
queries considered here is the computational complexity, in terms of both
computation and memory. New index structures that can work in the high-
dimensional spaces resulting from these cones need to be developed.

12.4.4 Analysis of Time-Variant Properties of Pathways

As discussed earlier, several formalisms exist for modeling pathways. No
dominant technique has emerged that can represent the kinetics, the
dynamics, and the logical structure of pathways. There are tradeoffs between
the accuracy of the approaches and their scalability. This heterogeneity
implies that mechanisms should be provided to integrate the simulations from
different models. This integration needs to happen not only at a protocol level
but also at a semantic level. One obvious mechanism to support semantic
integration is through spatiotemporal traces. Since the different pathway
models finally predict and produce spatiotemporal traces (concentrations
of biomolecules at different spatial locations), comparisons across different
models would be greatly enhanced if these traces could be stored in a
database, queried, and compared with suitable metrics.

The pathway models produce spatiotemporal traces at different spatial
and temporal resolutions. Some models assume a homogeneous environment
throughout a cell, while the others can compartmentalize a cell into 3D
boxes. Such compartmentalization is important for modeling the localization
of processes in organelles and the transport of biomolecules. New techniques
for querying and comparing spatiotemporal traces at varying spatial and
temporal scales need to be developed.

There has been significant research on analysis of large collections of time-
series data [219]. Both single-attribute and multiattribute traces have been
considered. A multiattribute trace arises when different attributes of a cell are
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being quantitatively measured, possibly in different locations. Comparisons
and analysis of the traces can be made in a number of ways: nearest-neighbor
(NN) queries that ask for all trace points that are closest to a given query
point under a defined distance metric, range queries that ask for all trace
points that lie within a specified range, correlation queries that ask for all
trace segments that are similar, and so on. We next present an index structure
that allows flexible querying of single-attribute time series.

Accommodating queries of arbitrary lengths is important for time series
databases. Such querying can be accomplished through summarizing a time
series at multiple resolutions [209]. Let s be the longest time sequence in the
database, where 2b ≤ |s| < 2b+1 for some integer b. Similarly, let the minimum
possible length for a query be 2a for some integer a where a ≤ b. Let s1, s2, ...,
sn be the time sequences in the database. As shown in Figure 12.5, the index
structure stores a grid Ti,j , where i ranges from a to b and j ranges from 1
to n. Component Ti,j is the set of MBRs for the jth sequence corresponding
to window size 2i. To obtain Ti,j , each sequence of length 2j in sequence si

is transformed using DFT or wavelets, and a few of the coefficients from the
transformation are chosen. The transformed sequences are stored in MBRs.
The ith row of the index structure is represented by Ri, where Ri = {Ti,1, ...,
Ti,n} corresponds to the set of all structures at resolution 2i. Similarly, the
jth column of the index structure is represented by Cj , where Cj = {Ta,j ,
..., Tb,j} corresponds to the set of all structures for the jth time sequence in
the database. This index structure is called the MR (multiresolution) index
structure.

The search technique partitions a given query sequence of arbitrary length
into a number of subqueries at various resolutions available in the index
structure. Later, it performs a partial range query for each of these subqueries
on the corresponding row of the index structure. Given any query q of length
k ·2a and a range ε, there is a unique partitioning q = q1q2...qt, with |qi| = 2ci

and a ≤ c1 < ... < ci ≤ ci+1 ≤ ...ct ≤ b. This partitioning corresponds to the
1’s in the binary representation of k. A search is first performed using q1 on
row Rc1 of the index structure. As a result of this search, a set of MBRs that
lie within a distance of ε from q1 is obtained. Using the distances to these
MBRs, the value of ε for each MBR is refined, and a second query is made
using q2 on row Rc2 and the new value of ε. This process continues for the
remaining rows Rc3 ... Rct

.
A number of experiments were carried out on different kinds of queries

and different datasets. The result for range queries on a stock market dataset
are presented here, specifically precision and I/O overhead for four different
techniques: sequential scan, prefix search (a competing method in which
information is maintained at a fixed resolution [119]), longest prefix search (a
variation of the MR index in which only a single row of the index structure
is searched), and MR index. The precision and I/O (number of disk reads)
is plotted as a function of the number of dimensions (coefficients) of the
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Fig. 12.5. Layout of the MR index structure.

transformed data set. Precision is defined as the number of MBRs that
contain result sequences divided by the number of MBRs in the candidate set.
Note that for sequential scan, the candidate set is the entire database. The
performance of sequential scan is not affected by the number of dimensions.

According to the experimental results, the MR index and LPS (longest
prefix search) perform better than prefix search and sequential scan for all
dimensionalities. The precision of the MR index structure (Figure 12.6) is
more than five times better than prefix search and more than 15 times
better than sequential scan. Compared to LPS, the MR index is about 15%
better for the stock market dataset. This improvement is an indication of the
performance gain due to iterative reduction in query range as one traverses
down the rows of the MR index structure. Figure 12.7 compares the I/O
overhead of the four mentioned techniques. The number of page reads for the
MR index structure is less than one-sixth of that for prefix search and less
than one-seventh of that for sequential scan.

Flexible index structures such as the one discussed will be useful for
comparing simulations resulting from different pathway models. Research
on index structures for multiattribute time sequences and the use of other
metrics besides Euclidean distance will also be relevant for the integration
and comparison of pathway models.
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Fig. 12.6. Precision for the stock market dataset for different dimensionalities.

12.5 Conclusion

The challenges of indexing biological data are immense: accommodating
different similarity metrics, use of statistics, novel data types, and support for
integrative techniques. This chapter has presented a number of open problems
and some specific instances of solutions.1 However, many of the problems are
open-ended and await the design of new methods. The recent emergence of
bioimage data (e.g., confocal microscopy, AFM) also adds to the diversity
of biological data. Finally, a word of caution regarding the development of
new index structures. Although the complexity, heterogeneity, and size of
biological datasets motivate faster access mechanisms, the question of quality
of results remains paramount.
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Glossary

AdaBoost. Classifier that uses an iterative procedure to manipulate the
weights on the training data during training, putting more weight on
the wrongly classified data points and less on the correctly classified
ones at each iteration (chapter 8).

allele. Variant form of a marker or a gene (chapter 6).
amino acid. Any of a class of 20 molecules that are combined to form

proteins in living things. The sequence of amino acids in a protein and
hence protein function are determined by the genetic code (chapter 11).

bagging. Classifier that repeatedly selects a random sample from the
training data and averages the outcomes of all trained classifiers
(chapter 8).

base pair, kb, Mb. Two complementary bases forming a single step
in a double-stranded DNA or RNA molecule. Length of DNA (or
RNA) sequences is measured in base pairs (bp). 1 kb = 1000 bp,
1 Mb = 1000 kb (chapter 6).

CD tagging. Molecular biology technique that introduces a DNA
sequence (the CD cassette) into genomic DNA (usually via a genetically
engineered retroviral vector) so that if the CD cassette is inserted into
an intron of a gene, the gene will generate a chimeric protein containing
a unique protein sequence inserted into the original protein sequence
(most frequently used to tag proteins with a fluorescent probe such as
green fluorescent protein, GFP) (chapter 8).

classification. Tree where taxa are represented by nodes labeled by taxon
name and taxon rank (chapter 10).

classifier ensemble. Macroclassifier that combines the outcomes from
more than one base classifier (chapter 8).

clustering. Algorithm that groups points together based on some
distance or similarity metric (chapter 3).

consensus tree. Tree summarizing the information in common to two
or more trees (chapter 10).

crossover. Reciprocal breakage and reunion of two homologous
chromosomes. Before reunion the partial chromosomes exchange
partners (chapter 6).

DNA. Deoxyribonucleic acid; the molecules inside cells that carry genetic
information and pass it from one generation to the next (chapter 11).

domain. Specific region or amino acid sequence in a protein associated
with a particular function or corresponding segment of DNA (chapter
11).

feature normalization. Removing the magnitude divergence among
features by expressing them on a common scale (chapter 8).
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feature recombination. Producing a set of features by combining
information from more than one input feature to generate each output
feature (chapter 8).

feature reduction. Producing a smaller set of features from a feature
set so that only informative and/or discriminative features are kept
(chapter 8).

fluorescence microscopy. Method for imaging samples, such as cells,
that measures the light emitted from fluorescent probes at one or more
wavelengths upon exposure to light of another wavelength (chapter 8).

fractal dimensionality reduction (FDR). Feature selection method
that employs fractal dimensionality as an approximation of the intrinsic
dimensionality of a dataset and removes features that do not contribute
to the intrinsic dimensionality of the dataset (chapter 8).

gene. Stretch of DNA coding for a protein (chapter 6).
gene mapping. Process that aims at locating a gene affecting a given

trait (chapter 6).
genetic algorithm. Iterative, randomized feature selection algorithm

that employs genetic operators to manipulate feature combinations so
that the classification error is minimized at each iteration (chapter 8).

genotype. Genetic code of an individual. Specifically, a marker genotype
is the pair of alleles at the marker, and a (phase-unknown) multimarker
genotype is a vector of (unordered) allele pairs over the set of markers
(chapter 6).

geometric graph. Graph representation that encodes both the
connectivity between the vertices as well as the position of the vertices
in the 3D space (chapter 9).

graph isomorphism. Two graphs g1 and g2 are isomorphic to each other
if there is one-to-one mapping between all the vertices and edges of the
graphs g1 and g2, which preserves the vertex as well as edge labels
(chapter 9).

haplotype. Vector of alleles in a single chromosome over a set of markers
or genes (chapter 6).

Haralick texture features. Numerical features that describe the
relationship between the intensities of pixels and their adjacent pixels,
calculated as various statistics of the gray-level co-occurrence matrix
of the image (chapter 8).

identical by descent (IBD). Two alleles or haplotypes are identical by
descent if they have been inherited from a common ancestor unchanged
(chapter 6).

identical by state (IBS). Two alleles or haplotypes are identical by
state if they cannot be distinguished by laboratory methods (chapter
6).

independent component analysis (ICA). Feature recombination
method that retrieves statistically independent features from the
original features (chapter 8).

information gain ratio. Variable that measures how much more
information will be gained by splitting a decision tree node on a certain
feature (chapter 8).

kernel principal component analysis. Feature recombination method
that uses a kernel function to map the original features to a very high-
dimensional space in which principal component analysis is conducted
(chapter 8).
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leaf. Node in a tree that has no descendants. Also called a tip or a terminal
node (chapter 10).

linkage. Nearby markers tend to be transmitted together. Linkage
between two loci can be expressed quantitatively by recombination
fraction (the probability of the loci being separated in a single meiosis)
(chapter 6).

linkage disequilibrium (LD). Nonrandom association of nearby
markers (chapter 6).

Linnaean classification. Classification where each taxon has a rank.
Taxa of lower rank are included in taxa of higher rank (chapter 10).

location proteomics. Subfield of proteomics directed toward objectively
and systematically determining the subcellular location patterns of all
proteins in a cell type or organism (chapter 8).

locus (pl. loci). Location of a specific marker or gene in a chromosome
(chapter 6).

marker. Polymorphic stretch of DNA for which the variants can be
reliably detected (chapter 6).

mixtures-of-experts. Classifier that employs the divide-and-conquer
strategy to assign individual base classifiers to different partitions of a
dataset (chapter 8).

Morgan, M, cM. Genetic distance between two loci measured in
Morgans (M) is defined as the expected number of crossovers between
the loci in a single meiosis. 1 M = 100 cM. On average, 1 cM is roughly
1 Mb, but the ratio varies a great deal throughout the genome (chapter
6).

multiple sequence alignment. Process of taking three or more
sequences and forcing them to have the same length, maximizing their
similarity (chapter 3).

nonlinear principal component analysis (NLPCA). Feature
recombination method that employs a nonlinear transformation of the
original features (chapter 8).

penetrance. Probability of the occurrence of a phenotype given a
genotype (chapter 6).

phase. Parental origin of an allele, maternal or paternal (chapter 6).
phenocopy. Phenotype of nongenetic origin that appears similar to that

of genetic origin (chapter 6).
phenotype. Observable characteristic or trait of an individual, e.g.,

presence of a disease (chapter 6).
phylogenetic classification. Classification where taxa have no rank but

are instead defined with respect to a phylogenetic tree (chapter 10).
phylogeny. Tree depicting the evolutionary relationships between a set

of objects, such as organisms or molecular sequences (chapter 10).
prevalence. Relative frequency of a disease in a population (chapter 6).
primary structure. Covalent backbone of a macromolecule. The order of

subunits in a biological polymer, such as amino acids in a polypeptide
or nucleotides in a molecule of DNA or RNA (chapter 11).

principal component analysis (PCA). Feature recombination method
that employs a linear transformation of the original features (chapter
8).

protein. Molecule made up of amino acids that are needed for the body
to function properly. Proteins are the basis of body structures such
as skin and hair and of substances such as enzymes, cytokines, and
antibodies (chapter 11).
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protein contact map. Binary, symmetric matrix indicating for each pair
of amino acids whether they are in contact or not (chapter 7).

protein pathway prediction. Given a protein amino acid sequence
and its three-dimensional structure, determination of the time-ordered
sequence of folding events, called the folding pathway, that leads from
the linear structure to the tertiary structure (chapter 7).

protein structure prediction. Given a protein amino acid sequence
(i.e., linear structure), determination of its three-dimensional folded
shape (i.e., tertiary structure) (chapter 7).

protein subcellular location. Distribution of a protein inside a cell,
especially with respect to organelles or other distinct subcellular
structures (chapter 8).

protein subcellular location pattern. Statistical regularity of the
subcellular location of a protein (chapter 8).

quantitative structure activity relations (QSAR). QSAR relates
to the numerical properties of the molecular structure to its chemical
activity; such numerical properties are usually computed via a
mathematical model (chapter 9).

quaternary structure. Three-dimensional structure of a complex
protein; especially refers to the way the polypeptide subunits fit
together (chapter 11).

randomized tournament. Method of finding desired points in a metric
space based on random choice of small subsets and elimination based
on some metric (chapter 3).

rank. In a Linnaean classification each taxon has a rank, which specifies
its order in the classification. Typically the highest rank is “kingdom”
and the lowest rank is “subspecies” or “variety” (chapter 10).

recombination. Interchange of genetic material between two homologous
chromosomes during meiosis. In humans recombination occurs by
crossing over (chapter 6).

secondary structure. Folded, coiled or twisted shape a polypeptide
or polynucleotide chain takes on when hydrogen bonds form between
adjacent parts of the molecule (chapter 11).

secondary structure element (SSE). Either an α-helix or β-strand,
two of the most common secondary structures found in proteins
(chapter 7).

sequence alignment. Process of lining up two or more sequences
to achieve maximal levels of identity (and conservation, in the case
of amino acid sequences) for the purpose of assessing the degree of
similarity and the possibility of homology (chapter 11).

stepwise discriminant analysis (SDA). Feature selection method that
selects features that can separate different classes from one another
while keeping each class as tightly packed as possible (chapter 8).

structure of chemical compound. Three-dimensional arrangement of
atoms and bonds in a chemical compound (chapter 9).

subcellular location features (SLFs). Numbers derived from applying
various functions to fluorescence microscope images in order to describe
the properties of protein subcellular location patterns (chapter 8).

subcellular location tree (SLT). Rooted tree generated by hierarchical
clustering of a set of images representing many different protein
subcellular location patterns (chapter 8).
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supertree. Tree that contains all the leaves found in a set of trees with
overlapping leaves. For example, given the trees (a,(b,c)) and (b,(c,d)),
the tree (a,(b,(c,d))) is a supertree (chapter 10).

supervised learning. Artificial intelligence subfield that deals
with learning from previously characterized or described examples,
especially by learning the relationship between independent attributes
and a particular dependent attribute (chapter 8).

support vector machine (SVM). Generalized linear classifier that uses
a kernel function to map the original dataset to a very high-dimensional
space in which a maximum-margin linear classifier is found (chapter 8).

taxon. Unit of classification (chapter 10).
tertiary structure. Three-dimensional structure of a polypeptide in its

normal, folded state (chapter 11).
topological graph. Graph representation that encodes the connectivity

information between the vertices (chapter 9).
unsupervised learning. Artificial intelligence subfield that deals with

grouping unlabeled data into statistically indistinguishable clusters
(chapter 8).

wavelet features. Numerical features calculated from a discrete wavelet
transformation of an image (chapter 8).

weighted SSE graph. Graph representation of a protein, where the
vertices are the SSEs and the edges denote strength of interaction
between the secondary structures (chapter 7).

Zernike moment features. Numerical features that measure the
similarity of an image to each of a set of Zernike polynomials,
calculated by convolving the image with each polynomial and taking
the magnitude (chapter 8).
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